
Bridges to Self: Silent Web-to-App Tracking on Mobile via Localhost

Tim Vlummens∗

COSIC, KU Leuven
Aniketh Girish∗

IMDEA Networks Institute
Nipuna Weerasekara

IMDEA Networks Institute

Frederik Zuiderveen Borgesius
Radboud University

Gunes Acar
Radboud University

Narseo Vallina-Rodriguez
IMDEA Networks Institute

Abstract
Modern browsers and mobile operating systems leverage

sandboxing and process isolation to separate web and app
contexts. However, in this paper, we show that these isolation
guarantees can be — and had been — broken in practice on
Android devices by Meta and Yandex to enable cross-context
tracking that bridges web tracking with native identities.

Using a combination of large-scale web crawls from USA
and EU vantage points and systematic Android app analysis,
we characterize a previously undocumented family of web-
to-app tracking paradigms that exploit web standards such
as HTTP(S), WebSocket, and WebRTC to connect mobile
and web contexts on localhost. By linking pseudonymous
web cookies to long-lived native user IDs, these channels
enable persistent and stealthy cross-context tracking, and de-
anonymization. This new technique defeats protections such
as cookie clearing, Incognito mode, Mobile Advertising ID
(MAID) resets, VPNs, and Android’s work/personal profile
separations. We further show that Meta Pixel and Yandex
Metrica initiated localhost bridging prior to accepting cookie
consent banners. We evaluate browsers’ patching efforts and
defenses to these attacks in response to our responsible disclo-
sure, and the upcoming Local Network Access (LNA) permis-
sion, which introduces user prompts for accessing localhost
and local network addresses. In doing so, we identify addi-
tional side-channels that bypass such protections using (i)
global-unicast IPv6 addresses in WebRTC; and (ii) mDNS
lookups on *.local domains. Our results, together with an
enclosed legal analysis, expose structural shortcomings and
the need to revisit platforms’ and browsers’ isolation prin-
ciples, threat and trust models, protocol standards, and app
review processes to prevent future cross-context abuse.

1 Introduction

Many security and privacy protections in web browsers and
mobile operating systems rely on a foundational principle:

∗The two lead authors contributed equally to this work.

isolation. This principle limits how untrusted code can access
sensitive data or interfere with other processes, preserving
confidentiality and integrity [86].

On the web, browsers enforce isolation primarily through
origin-based policies such as the Same-Origin Policy [123],
which prevent scripts from different origins from directly
accessing each other’s data or execution contexts. Modern
browsers have further extended isolation by partitioning client-
side storage on a per-site basis to prevent cross-site track-
ing [92]. Mobile operating systems adopt process isolation
where each application gets assigned a distinct Linux user ID,
running in a siloed sandbox [24,86]. The sandbox prevents di-
rect access to other apps’ code, memory, and storage, forcing
all cross-app interactions through well-defined Inter-Process
Communication (IPC) channels [86]. This strong isolation
is a key reason why Android and iOS are widely considered
resilient to direct cross-app data leakage.

Prior research has extensively studied privacy and tracking
abuses on both web and mobile ecosystems [13, 49, 84, 113,
114], but largely as disjoint problems, implicitly assuming
that web and native apps are isolated. This paper shows that
this assumption of isolation fails by uncovering a determin-
istic tracking mechanism where native apps and in-browser
scripts coordinate via localhost channels — using HTTP(S),
WebSockets, or WebRTC — to link web and native identities.
Under current web standards, however, localhost is classified
as a potentially trustworthy origin [121], which facilitates
such abuse by exempting it from mixed-content restrictions.

As opposed to websites, many native apps require users to
log in and provide their identities through their real name or
email address, or they can programmatically access unique
device IDs such as the Android Advertising ID (AAID) [67].
Therefore, unvetted localhost channels enable the direct cou-
pling of web cookies with mobile app identifiers and users’
identity, effectively de-anonymizing users’ web activities.

This emerging web-to-app ID sharing paradigm bypasses
standard browser and mobile privacy protections, including
sandboxing, cookie clearing, or Incognito Mode, and poten-
tially violates mobile platform policies. Furthermore, it en-



ables malicious apps to eavesdrop on users’ web activity.
Through systematic static and dynamic code analysis and

web crawls, we show that Meta and Yandex have deployed
this novel and stealthy tracking method for years, escaping
browser and mobile platform security mechanisms. Specifi-
cally, our analysis reveals that native Android apps — includ-
ing Facebook, Instagram, and several Yandex applications —
covertly listen on local ports to receive user identifiers and
cookies from Meta Pixel and Yandex Metrica scripts embed-
ded on millions of websites. When loaded in users’ Android
browsers, these scripts establish silent connections with the
corresponding native apps via localhost sockets, enabling de-
terministic and persistent cross-platform tracking of hundreds
of millions of Android users globally. Our study makes the
following contributions:

• We study localhost tracking, a novel tracking technique that
enables the linking of web and mobile app identities for
deterministic tracking purposes using unrestricted access
to localhost channels.

• Through large-scale web crawls and mobile app analysis,
we measure this tracking mechanism’s prevalence. We find
that it is used by Meta and Yandex, two companies whose
mobile apps used by billions of users, and whose advertis-
ing/analytics scripts are present on millions of websites.

• We develop and disclose similar, novel attack vectors that
employ mDNS lookups, and global unicast IPv6 candidates
in WebRTC.

• We responsibly disclose our findings to browser and mobile
platform vendors (§11), which resulted in mitigations al-
ready deployed and shipped to end users. Yandex and Meta
terminated the tracking method on June 3rd 2025, on the
day of our public disclosure.

2 Background

This section reviews web privacy controls (§2.1), mobile pri-
vacy controls (§2.2), and introduces technical concepts related
to mDNS and WebRTC (§2.3), two methods that can be used
to bypass browser and platform isolations.

2.1 Web Privacy Controls

Browsers enforce the same-origin policy to isolate content
from different domains, and they limit cross-site tracking
via third-party cookie blocking and state/storage partitioning
[88, 90, 92, 93]. Modern browser-based privacy features fur-
ther restrict cross-site data flows [102, 129]. However, these
defenses typically assume that web content does not directly
interact with native applications.

Web standards treat localhost as a potentially trustworthy
origin [128], despite not being a secure or encrypted con-
text [91]. Unrestricted access to localhost and local networks
remains a persistent security gap in browsers, enabling vulner-

Figure 1: Localhost covert tracking threat model. The website
connects to an app running on the same device using localhost
communication channels such as HTTP(S), WebSocket or
WebRTC. The website may pass a unique user ID, which is
then linked to user’s persistent mobile app account or identity.

abilities such as DNS rebinding [78]; remote code execution
(RCE) and unauthenticated access in routers [100, 101] and
IoT devices [14]; password managers [72]; video conference
software [32]; and local ML model servers [108].

2.2 Mobile Privacy Controls

UNIX-based mobile operating systems (OSes) such as An-
droid and iOS enforce process sandboxing [24]. Yet, platform-
specific design choices determine how easily data can be ac-
cessed by processes and how it moves across contexts (e.g.,
app↔app, or app↔web). iOS limits apps’ ability to run in
the background, suspending their execution unless they de-
clare use of one of the platform-allowed background modes
(e.g., audio play, VoIP) [27]. In contrast, Android is more
permissive, allowing services and broadcast receivers to run
background tasks [19, 20].

Inter-process Communication (IPC). Android exposes var-
ious IPC mechanisms (e.g., intents, content providers, and
broadcasts) for cross-context communications [23]. Develop-
ers may protect such flows through custom permissions [56].
Cross-app communication on iOS is intentionally limited to
URL schemes/Universal Links or app groups (i.e., shared
containers for the same developer) [26, 30].

Permission Model. Modern mobile platforms regulate access
to sensitive capabilities and data through a permission model,
requiring explicit user consent to access features such as lo-
cation, microphone/camera, and Bluetooth scanning [22, 58].
To enhance user awareness and transparency, Android’s Pri-
vacy Dashboard (Android 12+) shows recent app permission
accesses [18]. In iOS, accessing special restricted privileges
such as local-network discovery requires additional entitle-
ments that are approved through app reviews [28]. The An-
droid Advertising ID (AAID), a resettable ID relevant to our
threat model described in §3, is commonly used for advertis-
ing and tracking. On Android 13 (API 33) and later, accessing
the ID requires declaring the install-time AD_ID permission;



otherwise, it is zeroed.

Platform Policies and Vetting Processes. Mobile platforms
define policies, and use app review processes to restrict the dis-
tribution of potentially harmful, insecure or privacy-violating
apps [125]. For example, these policies restrict cross-app
tracking and ID bridging [65, 66], and prohibit the distri-
bution of apps that “interfere with, disrupt, damage, or ac-
cess in an unauthorized manner the user’s device”, including
other apps running on the device [71]. Apple’s App Tracking
Transparency (ATT) requires opt-in consent for tracking and
forbids fingerprinting [25]. Google Play’s Data Safety sec-
tion requires developers to disclose how they collect, use,
and share user data, including data shared with third par-
ties [70]. Prior research found that the effectiveness of vetting
processes for privacy policy enforcement is limited in prac-
tice [55, 103, 113, 114, 125, 126, 131, 133].

2.3 WebRTC and Multicast DNS (mDNS)

Web Real-Time Communication (WebRTC). Modern
browsers support real-time, peer-to-peer (P2P) audio/video,
and data transmissions though WebRTC protocols, which are
exposed as JavaScript APIs. WebRTC negotiates connectivity,
and discovers paths between peers using the standardized
Interactive Connectivity Establishment (ICE) protocol [76].
ICE collects three candidate types that indicate protocols and
routing needed for connectivity: (i) host candidates derived
from local network interfaces; (ii) server-reflexive candidates,
in the form of IP:PORT pairs, learned via Session Traver-
sal Utilities for NAT (STUN);1 and (iii) relayed candidates
allocated by Traversal Using Relays around NAT (TURN)
servers when direct connectivity fails.2 ICE packages these
candidates along with codec and transport parameters into
Session Description Protocol (SDP) offer/answer exchanges
to establish a P2P connection. WebRTC specifications treat
browser-generated SDP as an opaque artifact that must be
passed unchanged, requiring negotiation to occur exclusively
through standardized APIs rather than direct SDP modifica-
tion (“SDP munging”) [73,77]. SDP munging is discouraged
by both IETF and WebRTC standards, to avoid compatibility
issues and unintended data leakage [124].

Multicast DNS (mDNS). The mDNS protocol provides DNS-
like name resolution on the local network address space with-
out a unicast DNS server. Hosts advertise and resolve .local
names via multicast on UDP:5353 (IPv4 224.0.0.251, IPv6
ff02::fb) [42]. Paired with DNS-Based Service Discovery
(DNS-SD), mDNS enables zero-configuration discovery of
nearby services (e.g., printers, smart devices) by publishing
service types and attributes [41]. Because mDNS announces

1STUN is a lightweight protocol that reveals an endpoint’s public-facing
address and assists with NAT traversal checks.

2TURN relays data through a server when firewalls or NATs block direct
routes.

the presence of the device and may propagate device metadata,
it can reveal local topology and enables household fingerprint-
ing or cross-device tracking [57]. Mobile platforms expose
APIs for mDNS/multicast discovery, but their use is subject
to platform controls such as iOS Local Network prompts
since iOS 14 or the experimental Android’s Local Network
permission since version 16 [21, 29].

3 Threat Model

This paper introduces and demonstrates a novel tracking
method that exploits unrestricted access to localhost sock-
ets on mobile and websites to bridge web and native tracking
identifiers. Figure 1 provides a high-level description of this
attack and its implications.

The method requires the attacker to control a native mobile
app, and a website or third-party scripts embedded on other
websites. Both Android and iOS allow user-space apps with
installation-time permissions or entitlements (e.g., INTERNET
for Android) to open a listening or sending socket on the loop-
back interface. Until the deployment of LNA in October 2025,
browsers allowed localhost access through JavaScript APIs
without user or platform mediation. As a result — despite
operating with limited user-space privileges and process sand-
boxing constraints — the attacker can establish via HTTP(S)
or WebRTC communication channels between web scripts
and other processes on the same device.

By bridging web and native contexts to link ephemeral
web IDs to long-lived mobile app IDs, the method enables
persistent cross-platform tracking. This web-to-mobile bridg-
ing channel (i) breaks fundamental mobile and web isolation
safeguards such as OS sandboxing, Incognito mode [69], and
cross-origin access restrictions; (ii) defeats privacy-enhancing
tools such as VPNs; (iii) defeats Android’s work-personal pro-
file separations; and (iv) enables persistent reconstruction of
mobile advertising IDs and cookies after reset events, defeat-
ing the purpose of resettable IDs and cookie deletion [68].

For achieving global cross-platform tracking, the attacker
must gain access — directly as developer or through partner-
ships with other firms — to (i) a prevalent web script; and (ii)
a widely installed app, so it is likely that both the attacker’s
script and their app are running on the same device. The attack
can be launched by the attacker’s third-party advertising and
analytics scripts, and can even be micro-targeted to specific
users through Real-Time Bidding (RTB) processes. The at-
tack generalizes to other types of software, including browser
extensions, native SDKs and in-app browsing technologies
such as WebViews and CustomTabs [33, 131].

3.1 Attack Feasibility
Android. We develop two Proof-of-Concept (PoC) Android
apps to demonstrate the feasibility of the attack in different
mobile browsers, both on Android 15 and 16. The PoC apps



include (1) an HTTP request/UDP payload logger, and (2)
an mDNS lookup logger. Both apps bind to the localhost ad-
dress and listen on an arbitrary port for incoming requests,
allowing us to evaluate whether HTTP(S), WebSocket, and
WebRTC connections on localhost are permitted between web
and native contexts. We find that all major browsers permit
some form of localhost communications between web scripts
and native mobile apps (Table 3). Up to and including An-
droid 15, none of the PoC apps required user permission. On
Android 16, listening to mDNS lookups requires the experi-
mental Local Network permission [21]. However, the scope
and semantics of local network IP addresses protected by this
permission differ from those of localhost IPs, hence poten-
tially leading to user confusion. For these reasons, we argue
that localhost access should be handled separately from local
network access controls. §6 presents a detailed evaluation
of different browsers and applicable mitigations against real-
world instantiations of the localhost attack.

Android Enterprise Profiles. Android supports Work Pro-
files for managing work-related apps and data, ensuring that
personal and work data are kept separate [17]. We demonstrate
through our PoC apps that the localhost attack remains feasi-
ble across profiles without any restrictions based on profile
scope (e.g., Work or Personal), defeating the security assump-
tions and expectations of enterprise network management.
The attack remains feasible even with active VPN tunnels.

iOS. We empirically verify the feasibility of this attack on
an iPhone 14 Pro running iOS 18.5. On both Safari (v18)
and Brave (v1.78.1), we successfully fetch web resources
from a native HTTP server actively listening on localhost
on the phone. Concretely, we run a local server iOS app
(PocketServer) on a specific port, and load a resource from
that particular localhost:port on a public HTTPS test page.
Practical exploitation on iOS depends on the ability of a
malicious app to remain active in the background and on
Apple’s ability to effectively detect deceptive background
executions. Although iOS imposes more restrictive controls
than Android over background executions [27], apps could run
local servers in the background if they receive the necessary
(background) entitlement. Indeed, the iOS app we use in the
tests (PocketServer) could run in the background without
interruption, using the NoIdleSleepAssertion by claiming
to play audio despite having no UI indicator.

4 Methodology

Detecting and characterizing localhost web-mobile bridging
abuse in the wild requires joint analysis of both websites
and mobile applications, as the attack requires their coordi-
nation. This requirement significantly increases analysis and
measurement complexity, as it entails reasoning over a large
combinatorial space of website-app pairs (§4.1). We address
this challenge by adopting a principled methodology that

combines instrumented web crawling (§4.2) with static and
dynamic Android app analysis techniques (§4.3). This ap-
proach allows us to efficiently reduce the problem space and
identify candidate website-app pairs for in-depth analysis.

4.1 Dataset
Websites. We crawl the top-100,000 sites from the February
2025 CrUX rankings [47, 64] (February 2025). We chose
the CrUX ranking following recent best practices [115], as
it represents the set of web-specific domains, grouped into
popularity tiers, more accurately than traditional top lists. We
additionally use historical HTTP Archive data to longitudi-
nally trace the emergence and evolution of web-to-app bridges
over time, using fetched resources, invoked web APIs, and
error logs recorded in the archives [75].
Mobile Apps. We construct a corpus of 5,000 apps from
Google Play’s Top Free charts in the EU and USA using
the open-source google-play-scraper [107]. We fetch (i)
the overall Top Free list and (ii) Top Free apps per category,
including store metadata (e.g., package name, install counts).
We then rank the top-5k apps by cumulative install counts, as
it is a more stable signal of app popularity compared to active
installs. We use Google Play (on-device) with the app seed
list to automatically download and run apps onto a pool of
instrumented Pixel devices located in the EU.

4.2 Web Analysis
We perform web crawls using a customized version of Duck-
DuckGo’s Tracker Radar Collector (TRC) [46], an open-
source Puppeteer-based crawler equipped with anti-bot mea-
sures (e.g., hiding ‘navigator.webdriver‘). We leverage TRC’s
collectors to capture HTTP requests, cookies, and accesses to
certain JavaScript API methods and properties. We crawl the
CrUX top-100k sites using machines located in the USA (New
York) and the EU (Frankfurt), customizing the User-Agent
string and viewport to emulate an Android phone (Google
Pixel 7 with Android 13), an iPhone (iOS version 18), and a
Windows 10 computer.

We modify TRC’s request collector to record WebSocket
frames in addition to HTTP(S) requests, and we monitor
WebRTC usage by instrumenting selected WebRTC-related
JavaScript API methods (Appendix A). After each crawl com-
pletes, we process the collected data using a dedicated anal-
ysis script to identify potential localhost communications.
Specifically, we check if HTTP request URLs (including Web-
Socket handshakes) or the arguments passed to the setLo-
calDescription and setRemoteDescription WebRTC methods
contain either “localhost”, “0.0.0.0”, “::1” or a “127.0.0.0/8”
addresses, alongside any ports. We additionally resolve the do-
main names of the request URLs to identify cases that map to
the localhost address. We do not consider WebRTC candidates
for these lookups, as they only contain IP or mDNS (.local)



addresses. While our localhost definition aligns with the IP
ranges considered by the Local Network Access specifications
(LNA) [122], we also include requests to 0.0.0.0, which has
been abused in prior real-world exploits [108].

We modify the crawler to automatically accept cookies us-
ing Priv-Accept [79] to simulate user consent. After a site has
loaded, the crawler accepts all cookies when a site-provided
consent form is rendered, and it then waits ten seconds without
further user interaction while collecting all network traffic. In
total we perform four independent crawls per location where
cookies are accepted: two before and two after our public dis-
closure. These crawls include a mobile (Android) and desktop
(Windows 10) crawl in April and May 2025. Following our
public disclosure in June 2025, we perform an Android and an
iOS crawl to ensure the localhost tracking method is not used
anymore. We perform an additional no-consent crawl on sites
where we observed localhost communications in our initial
(April 2025) Android crawl to simulate whether user consent
is necessary for localhost tracking. In this crawl, the crawler
does not interact with consent forms or any other elements
on the page. Across all runs, our crawler successfully visited
92–96% of the 100K sites.

4.3 App Analysis

To detect and validate localhost-based web–to–app or web–
to–SDK channels, we combine static and dynamic analysis
as neither approach is sufficient in isolation. Static analysis
produces false positives (e.g., localhost use for debugging
or IPC) and false negatives (e.g., due to code obfuscation
or dynamically-loaded code) when scanning for loopback
address usage, embedded HTTP servers, STUN/TURN chan-
nels, or in-app listeners, while dynamic analysis alone pro-
vides partial visibility because behaviors may depend on tim-
ing conditions or server-side commands. This multi-modal
approach is essential to balance scalability and visibility; ac-
cordingly, we rely on dynamic analysis as the primary tech-
nique to obtain concrete evidence of abuse, using static anal-
ysis to interpret and contextualize observed behaviors, con-
sistent with prior large-scale mobile app measurement stud-
ies [33, 57, 58, 81, 83, 84, 113, 117, 131].

Using the Android app dataset (§4.1), we automatically
test each app in a pool of OS-instrumented Pixel smartphones
(6a/3a; Android 12-16), providing visibility into runtime re-
source access, including permission-protected APIs, file I/O,
process lifecycle events, and socket creation and binding. We
use in-process monitoring using Frida [111] to observe and
modify specific functions in both Java and native code to (i)
bypass proprietary certificate pinning and custom TLS ver-
ification [110]; (ii) trace crypto operations; and (iii) record
variable assignments and serialized fields immediately before
they are written to sockets. In parallel, we use (i) tcpdump
and mitmproxy to trace browser JavaScript requests to lo-
calhost and the corresponding responses from native apps;

and (ii) netstat to identify open ports.3 The combination
of these techniques enables us to capture browser JavaScript-
generated requests to localhost and app responses, including
any immediate app- or web-to-cloud data dissemination.

To trigger web-to-app flows, we load pages found in our ac-
tive crawls that embed target scripts (e.g., Meta Pixel, Yandex
Metrica) in major mobile browsers. Each app is automatically
executed for 10 minutes using Android Monkey to gener-
ate synthetic UI interactions. To pass SSO-based registration
walls and increase code-path coverage, devices are provi-
sioned with pseudonymous phone numbers, email addresses,
and usernames. Because input identifier values are known
per device, we automatically search for direct occurrences of
these values in captured traffic, including common transfor-
mations (e.g., hashes such as MD5, SHA-1, and SHA-256).

4.4 Limitations

Detecting a complex, cross-platform abuse such as localhost-
based tracking poses inherent scalability and observability
challenges: certain web-to-app localhost flows can only be
triggered by testing specific app-website combinations, yet ex-
haustively evaluating all possible pairs across app stores and
the web is technically infeasible. We partially mitigate these
factors through efficient triage using large-scale web crawls,
on-device dynamic instrumentation, and static/decompiled
code analysis. Moreover, as §5 shows, real-world instanti-
ations of this abuse implement evasive features relying on
remote configuration, execution delays, and code obfuscation.
As a result, we do not claim completeness, but rather a demon-
stration of both the technical feasibility of the attack and its
real-world exploitation, while providing concrete evidence to
inform the design of mitigations that can benefit billions of
users worldwide.

While our web crawls emulate Android, desktop and iOS
browsers, our app analysis is Android-focused. In our mea-
surements and manual analyses, Meta’s and Yandex’s scripts
trigger requests only on mobile Android browsers, as de-
termined by user-agent-based checks. No localhost usage
is observed in iOS and desktop via targeted small scale on
these platforms. In §3.1 we show how localhost ID-sharing is
also technically possible in iOS, though stricter background-
execution and process controls make it more challenging.

5 Empirical Results

From the web and Android app analysis methodologies de-
scribed in §4, we identify two large-scale deployments of
localhost-based tracking attributable to Yandex (§5.1) and
Meta (§5.2). §5.3 quantifies the prevalence of websites em-
bedding Meta’s and Yandex’s scripts and characterizes their

3We attribute open ports to apps by resolving PID/UID to package names.



Figure 2: Diagram showing the steps of Yandex Metrica’s
localhost communication.

consent-handling behavior. §5.4 discusses other, potentially
legitimate, uses of web-to-mobile localhost channels.

5.1 Yandex Metrica

Yandex Metrica [135] and Yandex AppMetrica are Yandex’s
web and mobile analytics solutions, respectively [134]. An-
alyzing our web crawl results, we observe that the Yandex
Metrica and AppMetrica products exchange tracking iden-
tifiers via localhost channels for web-to-mobile matching.
Specifically, Yandex Metrica’s JavaScript initiates HTTP and
HTTPS requests with opaque parameters to localhost over
a set of pre-defined TCP ports: i.e., 29009, 29010, 30102,
and 30103. Several native Android Yandex-owned apps such
as Yandex Maps and Navigator, Yandex Search, and Yandex
Browser implement background localhost HTTP servers that
actively listen for incoming connections on these ports. Table
5, in Appendix B, lists the Yandex-owned apps that we find
listening on localhost ports using dynamic instrumentation,
along with their package names and versions. Code inspection
indicates that this behavior is tied to the AppMetrica SDK
embedded in these apps rather than to app-specific logic.

A targeted analysis of Yandex Maps and Navigator
(ru.yandex.yandexnavi) shows that the localhost server
functionality disappears in the period surrounding our public
disclosure, between late May and early June 2025.

5.1.1 Communication Flow

Yandex native apps contact a Yandex-controlled endpoint
(startup.mobile.yandex.net) to retrieve a runtime configura-
tion that specifies the local ports to listen on (e.g., 30102,
29009). This server-controlled mechanism allows the local-
host channel configuration to be updated dynamically without
app updates, resembling command-and-control behaviors and
making it robust against static blocklisting and filters. Figure
2 shows the data flow of Yandex’s implementation:

➊ Following an initial delay, the app launches a back-
ground HTTP(S) server that listens on server-defined ports.
➋ The user visits a website embedding the Yandex Met-
rica JavaScript. ➌ The script contacts Yandex’s backend
(mc.yandex.com) to fetch a set of obfuscated parameters, as

Original payload

eyJ1dWlkIjoiOGMyZjRiMGQxNDMyNGFlNWIwOTg0NDB
mZDYwYzE5ZjkiLCJkZXZpY2VfaWQiOiJh
MmI5YmU2MWQ3MTc5ODU5ZTRiZWIxZTY0Y
2U0ZmFmNSIsImdvb2dsZV9haWQiOiJhODU3MWRhMC03
ZDNlLTRmMTItOGNjNC05MDMwNTU5ZDI5ODgifQ==

Decoded payload

{ "uuid": "8c2f4b0d14324ae5b098440fd60c19f9",
"device_id": "a2b9be61d7179859e4beb1e64ce4faf5",
"google_aid": "a8571da0-7d3e-4f12-8cc4-9030559

d2988"}

Figure 3: The top shows the encrypted payload. The corre-
sponding decoded plaintext JSON payload containing device
identifiers before encryption is shown at the bottom.

shown in Listing 3. These parameters include a validation
token (t), ephemeral server-generated values (a and b), and
a tag identifier (c) corresponding to the website’s Metrica
ID. ➍ The script forwards these parameters to the native lo-
calhost server over HTTP and HTTPS. Upon receiving the
request, the mobile app validates the t token and constructs a
response parameter that contains the web-supplied parame-
ters and native identifiers, including the Android Advertising
ID (AAID) [67], an AppMetrica SDK-specific UUID, and
additional device IDs accessible via Java APIs (Figure 3). The
response parameter is encrypted using an AES-RSA hybrid
scheme and Base64-encoded. ➎ The response parameter is
returned to the requesting JavaScript code running on the
browser context. ➏ The Metrica JavaScript immediately re-
lays the response parameter to Yandex’s backend servers (e.g.,
mc.yango.com), enabling the matching of web traffic activity
to users’ mobile app identities.

To validate the content of the response, we use static anal-
ysis to locate the specific code segment responsible for as-
sembling the localhost response. We then hook these methods
with Frida to intercept the plaintext JSON payload immedi-
ately before encryption. Table 6 in Appendix D lists additional
Yandex domains and collected data types observed during our
analyses, such as MAC addresses and precise geolocation.

Temporal Evolution. According to data from the HTTP
Archive’s historical crawls [75], Yandex has used localhost
channels since February 2017, initially using only HTTP re-
quests to TCP ports 29009 and 30102. In May 2018, they
added support for HTTPS on TCP ports 29010 and 30103, as
Table 1 reports. Both methods were used simultaneously for
over eight years until June 3rd 2025, when Yandex discontin-
ued the practice after our public disclosure.



Table 1: History of the used methods based on historical HTTP Archive data. ∗ Meta Pixel script was last seen sending via
HTTP in Oct 2024, but Facebook and Instagram apps still listened on this port. They also listen on port 12388 for HTTP, but we
have not found any script sending to 12388. ∗∗ Meta Pixel script sends to these ports, but Meta apps do not listen on them. We
speculate that this behavior could be due to slow/gradual app rollout.

Method Start date (first seen) End date (last seen) Ports

Yandex HTTP Feb 2017 Jun 2025 29009, 30102
HTTPS May 2018 Jun 2025 29010, 30103

Meta

HTTP Sep 2024 Oct 2024∗ 12387
Websocket Nov 2024 Jan 2025 12387
WebRTC STUN (w/ SDP Munging) Nov 2024 Jun 2025 12580–12585
WebRTC TURN∗∗ (w/o SDP Munging) May 2025 Jun 2025 12586–12591

5.1.2 Use of Evasion Techniques

Yandex Metrica implements features that can evade detection
using conventional program analysis methods:
JavaScript and Java Code Obfuscation. On the JavaScript
side, Yandex encodes parameters (e.g., t, a, b, and c) and the
mechanisms used to dynamically retrieve localhost config-
uration from remote endpoints, limiting visibility into how
these ephemeral keys are generated and how they influence
the observed behaviors. The obfuscated nature of the Yandex
Metrica script further prevents us from determining the spe-
cific events that trigger localhost traffic on the browser side,
but manual testing reveals that loading the script is sufficient
to initiate the communication (§5.3). On the native side, we
observe pervasive class and method renaming, synthetic wrap-
pers, and convoluted control structures (e.g., deep nesting and
excessive try/catch blocks) that obscure the logic of the lo-
calhost server and parameter validation. To overcome these
challenges, we combine static inspection with Frida-based
runtime instrumentation to recover the plaintext JSON con-
taining AAID and other device-level IDs before encryption.
Delayed Execution. Yandex Metrica’s runtime
configuration—retrieved from startup.mobile.yandex.net—
includes a first_delay_seconds parameter that defers
the activation of its localhost server listeners for roughly
three days. Consequently, local server creation is unlikely to
be detected by standard dynamic analysis pipelines, which
usually test apps for a limited period of time on the order of
minutes or hours, rather than days [58, 84, 103, 112, 113].
Dynamic Port Selection. Because Yandex Metrica retrieves
localhost ports at startup, they can be changed dynamically
via server-side configuration without requiring an app update,
enabling rapid evasion of port-based blocking.
HTTPS Connection to a Domain Resolving to Loop-
back. Yandex scripts send HTTPS requests to the yandex-
metrica.com domain, which resolves to 127.0.0.1. The use
of a domain, rather than an IP address or the localhost host-
name, makes the abuse less detectable as it appears as normal
remote traffic. App analysis reveals that Yandex bundles a
complete TLS certificate for yandexmetrica.com directly in-
side their private storage in a PKCS#12 file protected by a

fixed password hardcoded in the app. This includes the match-
ing private key along with a full certificate chain signed by
GlobalSign, a trusted CA. The Certificate Transparency (CT)
logs confirm that this certificate has been registered since May
2018 4. Because this certificate is valid and publicly trusted,
browsers on the device can establish encrypted connections to
the app’s localhost service without triggering any certificate
warnings, as if it were a normal and legitimate remote server.
We note that the private key for the yandexmetrica.com certifi-
cate can be extracted by an attacker to perform spoofing and
TLS interception attacks with basic code analysis techniques.

5.1.3 Additional Risks: Browsing History Leak

Using unencrypted HTTP communication for web-to-native
ID sharing may expose users’ browsing history to third-party
apps that also listen on the aforementioned ports, inferring
users’ browsing history by parsing the Origin HTTP header.
This browsing activity disclosure also affects the first imple-
mentation of Meta’s localhost feature, as we present in §5.2.1.
We developed a PoC app to demonstrate how a malicious
actor could partially harvest users’ browsing history, shown
in Fig. 7 in Appendix C.

5.2 Meta Pixel

The Meta Pixel is a tracker script that is used on millions
of websites for advertising and marketing purposes [97], in-
cluding re-targeting ads to web visitors on platforms such as
Facebook and Instagram. According to the HTTP Archive,
Meta has deployed this web-to-mobile bridging mechanism
since late 2024, evolving its implementation and use of net-
work protocols over time as we detail in §5.2.1.

When Android users visit a website with the Meta Pixel, it
sends the first-party _fbp [96] cookie to the Facebook (e.g.,
v515.0.0.23.90) and Instagram (e.g., v382.0.0.43.84) apps
using WebRTC on ports UDP:12580-12585. The Threads app
(v377.0.0.0.30) also contains the logic to listen on these ports,
although we do not observe this behavior at runtime. We find

4https://crt.sh/?q=yandexmetrica.com



Figure 4: Diagram showing Meta Pixel’s localhost operations.

no evidence of code implementing localhost capabilities on
WhatsApp. The _fbp cookie is the third most common first-
party web cookie, present on approximately 25% of the top
1-M websites, according to Web Almanac 2024 [74].

Meta’s Cookies Policy [99] states that the _fbp cookie
is a first-party cookie that “identifies browsers for the pur-
poses of providing advertising and site analytics services and
has a lifespan of 90 days”. Technically, a first-party cookie
cannot be used for cross-site tracking, as it is scoped to the em-
bedding website’s (first-party) domain. In addition to users’
_fbp cookie, the Meta Pixel also collects data such as the
visited URL, pixel ID, page details, and events such as Add
to cart, Search and Checkout, along with relevant metadata
when applicable (e.g., product name and price). Publishers
can customize Meta Pixel to collect additional data, including
email hashes from registration forms [94].

Unless a user is logged into Facebook or Instagram on
their mobile browsers 5, Meta cannot directly link their Pix-
el/web activities to their Facebook or Instagram accounts. The
localhost bridge circumvents this limitation, allowing Meta
to persistently and deterministically link user identities and
activities across web and native contexts, despite Incognito
mode, VPNs, or clearing cookies.

5.2.1 Communication Flow

Figure 4 represents the observed data flow of Meta’s latest
localhost tracking implementation. ➊ When users open the
native Facebook or Instagram app, a background service that
listens on UDP:12580–12585 (used for STUN messages) and
on TCP:12387–12388 is started. 6 ➋ When a user visits a
webpage with the Meta Pixel, ➌ the script generates and ➍
uploads the _fbp cookie to the host https://www.face
book.com/tr along with metadata such as the page URL,
browser metadata, and event type (e.g., PageView, AddToCart)
, ➎ The script uses SDP munging to insert the _fbp cookie

5This is likely very uncommon given the availability of native Android
apps offering better performance and more features.

6When both apps are running simultaneously, they attempt to bind se-
quentially and will occupy the first available port.

into the SDP ice-ufrag field of a WebRTC offer (§2.3).
This causes the browser to emit a STUN Binding Request
to the loopback address (127.0.0.1) on UDP:12580–12585.
➏ The native Meta apps parse the STUN Binding Request
and extract the _fbp value from the USERNAME attribute, later
forwarding it through a GraphQL mutation to Meta servers on
https://graph.facebook.com/graphql. As illustrated
in Figure 5, the mutation includes fields containing the _fbp
cookie value: conversion_id=<fbp-value> and conver-
sion_id_type=DOMAIN_AND_FBP. Finally, the app replies
on localhost with a STUN Binding Success Response that
includes message integrity and fingerprint attributes. When
Meta Pixel receives this response, it records a timestamp (aid-
Time) in localStorage. As a client-side rate-limiting measure,
the script refrains from sending further traffic to localhost for
roughly one hour after the stored timestamp.
Temporal Evolution. HTTP Archive’s monthly crawls, sum-
marized in Table 1, indicate that Meta’s use of localhost im-
plementation evolved quickly over roughly nine months since
September 2024 until the 3rd of June 2025, when it was dis-
continued on the day of our public disclosure. The initial de-
ployment used plain HTTP requests to TCP port 12387, start-
ing in September 2024. In November 2024, Meta switched to
WebSocket traffic on the same port and, in parallel, introduced
WebRTC STUN binding requests across a UDP port range of
12580-12585, injecting the _fbp cookie into the SDP offer. In
May 2025, following our first responsible disclosure, Chrome
engineers announced that the specific SDP-munging tech-
nique that Meta used will be disabled to prevent abuse [16].
A few weeks after the announcement, Meta Pixel switched to
using the WebRTC TURN protocol [130] on localhost ports
UDP:12586–12591 to send the _fbp cookie.
Global WebRTC Usage Surge due to Meta Pixel. The
widespread deployment of the Meta Pixel and its reliance
on WebRTC APIs can be indirectly observed in trends re-
ported by Chrome’s Platform Status [60], which show a sig-
nificant increase in WebRTC API usage across popular sites.
Figure 6 highlights this trend for WebRTC’s RTCPeerCon-
nection.SetLocalDescription function, one of the meth-
ods invoked by Meta Pixel’s WebRTC implementation. Note
the surge in usage overlaps with the active period of Meta’s
WebRTC usage between November 2024 and June 2025.
Background Behavior. The Facebook and Instagram apps
start the listening servers a few tens of seconds after being
moved to the background. As the browser is in the foreground
when users navigate the web, this does not hinder localhost
communications. Instead, it makes it harder to capture evi-
dence during app testing, as automated testing typically stud-
ies apps in isolation and while executed in the foreground.
Transparency. We found no public documentation describ-
ing Meta’s localhost capabilities. In September 2024, when
a number of web developers reported on Meta’s own devel-
oper forums mysterious localhost requests triggered by Meta
Pixel, their questions were left unanswered [95, 98]. The de-

https://www.facebook.com/tr
https://www.facebook.com/tr
 https://graph.facebook.com/graphql


POST https://graph.facebook.com/graphql HTTP/2.0
x-fb-network-properties: Validated;dhcpServerAddr=172.16.4.1;LocalAddrs=/fe80::74...
x-fb-friendly-name: FBGraphQLOnDeviceConversionIDMutation
...
method=post&pretty=false&format=json&server_timestamps=true&locale=en_US&fb_api_req_friendly_name=

FBGraphQLOnDeviceConversionIDMutation&fb_api_caller_class=graphservice&client_doc_id=1489694xxx...&
fb_api_client_context={"is_background":true}&variables={"request":{"conversion_id_type":"DOMAIN_AND_FBP",
"conversion_id":"fb+1+17xxx282xxx+xx136xxxx3xx"}}...

Figure 5: Details of the request that Meta apps use to upload the _fbp cookie to Meta servers, as a GraphQL mutation
named FBGraphQLOnDeviceConversionIDMutation. In the payload, conversion_id is set to the browser’s _fbp cookie; and
conversion_id_type is DOMAIN_AND_FBP.

Figure 6: Chrome Platform Status [60] shows a surge
in RTCPeerConnection.SetLocalDescription usage on
popular websites, aligning with Meta Pixel’s active WebRTC
use between Nov.’24-May’25.

Table 2: Number of sites using localhost channels per crawl. ∗:
Performed after our responsible disclosure. Red percentages
report observed usage drop.

Crawl Location WebRTC HTTP(S) WebSocket

Android (April 2025) USA 17,368 1,379 35
EU 15,819 1,327 29

Desktop (May 2025) USA 385 109 43
EU 349 106 41

Android (June 2025∗) USA 437 (-97,5%) 247 (-82,1%) 36
EU 369 (-97,7%) 262 (-80.3%) 37

iOS (June 2025∗) USA 498 220 30
EU 422 250 29

velopers also remarked on Meta’s switch from HTTP to Web-
Socket for localhost requests, and at the end of October/be-
ginning of November, they noted that the issue appeared to
be fixed. We hypothesize that these concerns ceased because
WebRTC-based localhost data flows are visible only through
Chrome’s internal debugging interface (chrome://webrtc-
internals) and not through Chrome’s standard DevTool-
s/Network tab, substantially reducing developer visibility. No
further update was posted after Meta switched to WebRTC.

5.3 Crawl Results

Table 2 summarizes the results of various crawls (see §4.2).
Notably, the initial (April 2025) crawl emulating an Android
phone finds significantly more sites using localhost WebRTC
and HTTP(S) channels than the Windows crawls, highlighting
the Android-specific focus of Yandex’s and Meta’s campaigns.
The iOS and the second Android crawls (June 2025) were
performed after our responsible disclosure, when Meta and
Yandex discontinued localhost-based tracking.

When visited from the EU and the USA, our crawls identify
15,819 and 17,368 sites establishing localhost connections,
with Meta accounting for 99.1% of EU cases and 99.2% of
the USA cases. Turning to HTTP(S), we observe HTTP-based
localhost communication on 1,327 in the EU and 1,379 sites
from the USA, of which Yandex is responsible for 95.0% and
95.1% of these cases, respectively. WebSocket-based local-
host communication is rare, appearing only on 29 to 43 sites
in our crawls, which were conducted after Meta switched from
WebSockets to WebRTC methods. We discuss non-tracking
related potential usage of localhost communications in §5.4.

These figures represent conservative lower bounds, as our
crawling campaigns may be affected by bot detection and
were limited to visiting only the landing page of each site in
specific time periods. In practice, the scale of deployment is
substantially larger according to BuiltWith [38], a website that
tracks web technology adoption; it is estimated that the Meta
Pixel and Yandex Metrica are present on over 5.8 million and
3M websites, respectively [39, 40].
User Consent. We conduct a complementary web crawl over
the 16,831 (EU) and 18,431 (USA) sites where we observed
localhost communications of any type in the initial (April
2025) Android crawls. The goal of this focused crawl was
to assess whether localhost communications are triggered on
page load or after getting user consent. We find that on 75.8%
(EU), 78.2% (USA) of websites, localhost communications
were triggered without user consent by Meta Pixel. Yandex
Metrica triggered localhost communications on 84.4% (EU),
83.5% (USA) of websites without user consent. This raises
concerns about whether users’ privacy choices and data pro-



tection laws are respected (§9).

5.4 Other Uses of Localhost Communications
Our multi-modal web and app analysis methods identify other
actors using localhost channels. However, their presence is
marginal (below ten sites), hindering their ability to perform
large-scale user tracking comparable to Meta and Yandex.
To distinguish legitimate uses of localhost sockets (e.g., au-
thentication) from tracking abuse, we reason about the orga-
nizations responsible and manually examine request paths,
ports, parameters, and payloads to check for signs akin to the
localhost abuse described in the threat model.

Local Web Development. Localhost is commonly used by
developers for testing and debugging their websites. In a
handful of cases, we find these debugging features to be left
enabled in production.

OAuth. Some mobile apps perform user authentication in
the browser, a recommended pattern in the OAuth specifica-
tion [44]. After successful user authentication on the web, a
token is passed back to the native app via a defined port on
127.0.0.1. Crawl results show that scripts from Okta [106],
an identity provider, initiate connections to authenticator-
localprod.com, which resolves to 127.0.0.1.

Anti-Fraud. Anti-fraud solutions often scan localhost ports
to detect whether the host is controlled remotely. In the past,
eBay was found scanning visitors’ open ports [2]. We identify
a script from SEON (seondf.com) [118], an anti-fraud firm,
actively probing 13 different ports using WebRTC.

Video Streaming. Zalando (de.zalando.mobile) and Taobao
(com.taobao.taobao) apps spin up a temporary localhost
HTTP server to route video streams through it. The localhost
server fetches the content from a real CDN resource before
sending it back to a WebView-based player via localhost.

Other Cases. Several subdomains from the cross-platform
tracking firm 33Across [12] like cdn-ima.33across.com re-
solve to 127.0.0.1 in Europe, but not in the USA. We hy-
pothesize that the organization uses DNS-based methods to
block access from different regions.

6 Affected Browsers and Mitigations

We reproduce HTTP and WebRTC-based web-to-mobile
ID sharing methods to test whether popular browsers—i.e.,
Chrome, Edge, Mozilla Firefox, DuckDuckGo and Brave
for Android—are vulnerable to Yandex and Meta’s web-to-
mobile bridging. As Table 3 shows, all tested browsers were
at least partially affected. Below, we discuss several browser-
level mitigations to limit localhost-based tracking and abuse,
some of which were introduced in response to our disclosure.

Blocklists. Brave and DuckDuckGo browsers implement
blocklists to block resources from known trackers [37, 45].

Table 3: Overview of browsers affected by the localhost track-
ing method. ∗ Uses blocklists to block Yandex and Meta
scripts/domains.

Browser Version HTTP(S) WebRTC

Chrome 136.0.7103.125 Affected Affected
Edge 136.0.3240.50 Affected Affected
Firefox 138.0.2 Affected Partial
DuckDuckGo 5.233.0 Affected∗ Affected∗
Brave 1.78.102 Partial∗ Affected∗

In our measurements, Brave blocks all domains used by both
Yandex and Meta, while DuckDuckGo misses three infre-
quently used, alternate Yandex domains. DuckDuckGo up-
dated its blocklist after our disclosure. We stress that domain
blocklisting does not restrict the underlying communication
channels and may leave users vulnerable to potential localhost
abuse due to incomplete blocklists.

Blocking Localhost Requests. Brave blocks HTTP(S) re-
quests to 127.0.0.1 and localhost [36], hence preventing
the HTTP request method used by Yandex Metrica and the
early iteration of Meta Pixel. However, Brave does not block
requests to domains such as yandexmetrica.com that resolve
to 127.0.0.1 [4] or localhost WebRTC requests.

Firefox & Enhanced Tracking Protection (ETP). Firefox
ETP provides privacy protections beyond blocklists, including
anti-fingerprinting [102]. Our measurements show that ETP
blocks the Meta Pixel only in Strict mode. However, Meta’s
STUN-based localhost method fails on Firefox even when
the script loads, without producing an explicit error message.
Although the TURN-based WebRTC method later introduced
by Meta would likely have succeeded, Meta terminated the
campaign before a complete rollout. Similar to DuckDuckGo
Browser, Firefox misses three alternate Yandex domains, even
when the strict ETP mode is enabled.

Disallowing Mixed Content From Localhost. While
browsers generally block active mixed content [87], they do
not necessarily block it when coming from the localhost, con-
sidered a “potentially trusted” context [91, 128]. While Safari
prevents active content such as HTML from being loaded
via localhost, our experiments show that it allows web-to-app
channels for loading passive content such as images. We also
find that requests to domains resolving to the localhost (e.g.,
yandexmetrica.com) over HTTPS are not blocked in Safari.

Restricted Ports. Chrome maintains a list of restricted ports,
including TCP:22 (SSH) and 25 (SMTP) [62]. As a short-
term mitigation, Chrome added the localhost ports used by
Meta and Yandex to the list of restricted ports through a Finch
(public) trial [43, 59, 61]. We verify the effectiveness of this
mitigation against Meta and Yandex scripts, confirming the
blocked connections in stderr output and console logs.

Local Network Access (LNA). First released in Chrome sta-



ble v142 (October 28th, 2025), Local Network Access (LNA)
standard enables users to allow or reject access the local net-
work or loopback addresses [122]. LNA defines two permis-
sions, local-network and loopback-network, replacing
the previous single permission covering both cases. LNA does
not automatically block the underlying localhost channels, but
it gates the access behind a user permission. This delegation
of responsibility raised usability concerns, particularly due to
prompt text being hard to grasp by regular users [6].

LNA handles HTTP(S) requests, even if the requests are
sent to a domain resolving to 127.0.0.1. Other protocols
including WebSockets, WebRTC and WebTransport are ex-
perimentally supported with a command line flag. While the
LNA editors consider various protocols that can be used for
localhost and local network access, we discuss potential blind
spots in the following section. As of January 2026, LNA
has been only shipped in Chrome Stable (version 142) and
Firefox Nightly (version 143) [11]. WebKit (Safari) has also
expressed their intent to ship LNA [7].

7 Additional Attack Vectors

After observing browsers’ short-term mitigations following
our public disclosure of the Meta and Yandex findings, we
investigate alternative techniques capable of bypassing these
new defenses. While these additional attack vectors remain
technically exploitable, we did not observe evidence of abuse
via web crawls. We responsibly disclosed the new vulnerabili-
ties to the relevant browser makers prior to paper submission.

7.1 WebRTC & IPv6 Addresses
LNA determines whether to block a connection by check-
ing if the destination IP corresponds to a private IPv4/v6
address or the loopback address. We develop a variant of
Meta’s WebRTC STUN method that bypasses Chrome’s LNA
implementation [63] by leveraging the local ICE candidates
generated when invoking setLocalDescription. For compari-
son, Meta’s method hardcoded the loopback IP address in its
SDP answer to trigger a localhost connection.

We force our WebRTC peer to select one of its own gen-
erated ICE candidate addresses alongside a chosen port by
setting it as the answer received from a second peer on the
same page, effectively sending a WebRTC Binding Request
to localhost at the chosen port. A native app can bind to the
0.0.0.0 or ::1 address and listen for these messages on the
chosen port. Our test also reveals that the generated candidates
consist of a private IPv4 address and a global unicast IPv6 ad-
dress, if supported. To evade LNA, which mediates traffic to
private addresses, an attacker can use the global unicast IPv6
address in the list of generated candidates. On the mobile ver-
sions of the Chrome (v138.0.7204.180) and Firefox (v141.0.2)
browsers, scripts can directly read the IP addresses from ICE
candidates and thus choose the IPv6 address. On desktop

browsers and the mobile version of Brave, the attacker cannot
directly check if the given ICE candidate address is a pri-
vate address or not due to the introduction of random mDNS
(.local) addresses to prevent private IP address leaks via We-
bRTC [10]. However, our tests show that the private addresses
appear first in the generated candidate list, and the global
unicast IPv6 address is placed second on both Chrome and
Brave. Thus, if two or more candidates are generated, scripts
could trivially select the last UUID.local address. Similar
concerns about the use of IPv6 Global Unicast addresses to
bypass LNA have been raised independently [105].

7.2 mDNS Lookups as a Web-to-App Channel
As discussed in §2.3, mDNS queries are resolved via multi-
cast to 224.0.0.251:5353 for IPv4. As a result, any apps
listening to this address can receive queries coming from other
processes running on the same device, enabling an additional
unvetted channel between browser and native contexts. We
identify three additional mDNS-based web-to-app ID shar-
ing methods that go beyond the known shortcomings of the
LNA [119]:
• The first one exploits this behavior by issuing a fetch re-

quest to an attacker-chosen .local hostname that encodes
sensitive data. An app listening for mDNS queries can view
the address and extract the data from it.

• A second variant abuses WebRTC-generated UUID.local
hostnames and server-side bridging, which are intended to
prevent private IP address discovery [127]. In this case, a
web script gathers ICE candidates for a WebRTC peer, trig-
gering an mDNS multicast query. It then reads the gathered
UUID.local addresses and sends these to a server. The
native app also receives and sends these addresses to the
server. As UUID.local addresses are unique, they effec-
tively enable the linkage of browser visits to device IDs
obtained by apps.

• In the third variant, the script creates a custom .local ad-
dress and adds it to WebRTC ICE candidates. This process
will trigger another mDNS multicast query which can be
received by the app.

8 Discussion

Mitigating privacy threats like localhost abuse requires ad-
dressing structural changes across browsers, mobile platforms,
and standards, including the definition of new threat models.
Our study shows that localhost connections can be repur-
posed as a covert channel to bridge web and native mobile
app contexts. The abuse violates fundamental trust assump-
tions and isolation mechanisms of current mobile platforms
and web browsers. In response to our disclosures, multiple
browser engineers confirmed that localhost-based web-mobile
bridging was not explicitly considered in their threat models,
highlighting structural shortcomings and a blind spot. The



impact of this abuse is significantly amplified when a single
actor with substantial web and mobile reach can deploy co-
ordinated tracking logic across web analytics scripts, mobile
SDKs and widely installed mobile applications. In the cases
of the Meta Pixel and Yandex Metrica, their significant market
presence enabled silent, large-scale linking of web activity to
user identities or unique device IDs.

Recent platform responses reflect growing awareness, but
also reveal important structural limitations. Historically, both
LAN and localhost access were implicitly covered by install-
time network access permissions [57]. In early 2025, Android
16 (beta) introduced an experimental opt-in Local Network
Access (LNA) protection, gating LAN socket access behind
NEARBY_WIFI_DEVICES, with a dedicated runtime permis-
sion planned under NEARBY_DEVICES [21]. iOS applies com-
parable gating and, since iOS 14, prompts users for Local
Network access [29].

Current mobile platform permissions do not restrict explicit
access to localhost sockets, while the browser-side Local Net-
work Access (LNA) specification attempts to regulate its ac-
cess as part of its local-network threat model. We believe
that platform defenses must clearly decouple localhost socket
access from LAN access, both in permission semantics and
usability considerations, despite potential interference with
legitimate use cases [6]. Conflating the scope and purposes of
these IP ranges risks consent fatigue and user confusion, while
leaving localhost-based channels insufficiently constrained.
Beyond OS-level controls, standardization bodies such as the
W3C and the IETF should revisit the trust assumptions sur-
rounding localhost, particularly in specifications that implic-
itly grant it elevated status without accounting for adversarial
cross-process use.

Our results suggest that platform policies and enforcement
mechanisms play a critical role in deterring abuse. While An-
droid is more flexible with respect to background execution,
iOS introduces stricter constraints on long-lived background
execution, reducing the feasibility of persistent localhost lis-
teners and limiting them only to specific purposes (e.g., audio
playback or navigation).

The hybrid and coordinated nature of new cross-platform
privacy abuses, and the lack of appropriate threat models
complicate detection and enforcement at scale. Large-scale
detection of coordinated cross-context abuses could be limited
by: (i) the combinatorial explosion inherent to testing millions
of potential websites and apps in combination; (ii) the use
of evasion techniques; and (iii) the need to jointly exercise
apps and websites to trigger coordinated behaviors. As we
demonstrated, combining static and dynamic analysis meth-
ods across both web and mobile contexts can systematically
reduce the problem space and identify candidate app-website
sets exhibiting signals of coordinated cross-context behavior
that warrant deeper inspection.

9 Legal Considerations

What does the law in the EU say about the behavior by Meta
and Yandex? Because of length constraints, we discuss only
EU law, and within the EU we focus on the main legal princi-
ples, omitting greater detail.

A main requirement of the GDPR is that companies of-
fer transparency about what they do with personal data (ar-
ticle 5(1)(a)) [52]. We did not find any mention of the local-
host communication method and its use in Meta or Yandex’
websites, privacy policies, or other public documents. Hence,
transparency is lacking.

The GDPR also requires a company to have a ‘legal basis’
for personal data processing. The GDPR contains six possible
legal bases; the ‘legitimate interests provision’ and the data
subject’s ‘consent’ are most relevant for this paper (GDPR
article 6). In general, a company can rely on the ‘legitimate
interests provision’ if the company uses personal data for its
legitimate interests and those interests are not overridden by
the data subject’s privacy or other interests (article 6(1)(f)). In
this case, the companies cannot rely on this provision, among
other reasons because the data subject’s interests outweigh the
company’s interests, because of the lack of transparency, and
because the companies did not offer a clear opt-out possibility.

Another possible legal basis is the data subject’s consent
(article 6(1)(a)). The requirements for valid consent are strict.
For example, consent must be ‘informed’ and ‘specific’, and
the data subject must clearly indicate their agreement (arti-
cle 4(11)). In this case, the lack of transparency about the
tracking method makes it impossible for the companies to
rely on consent, because the data subject’s consent cannot
be informed or specific. Hence, the companies do not have a
legal basis for the personal data processing, which implies a
breach of the GDPR.

The companies’ tracking behavior probably also violates
the ePrivacy Directive [51], which requires that any party
who stores information on a user device, or gains access to
information already stored on a user device, ask the user for
informed consent first. The ePrivacy Directive applies to the
storing and accessing of cookies, but also to other information,
such as (web) pixels [50].

Meta might have also violated the Digital Services Act
(article 26(3) and 28(2)) [54] and the Digital Markets Act
(article 5(2)) [53], but a discussion of those laws falls outside
the scope of this analysis.

10 Related Work

Local Network Access. Kuchhal and Li observed widespread
localhost and LAN access in the wild, driven by both inten-
tional uses (e.g., fraud detection) and accidental leaks, with
behavior varying by OS [85]. Their crawlers were based on
desktop browsers, which may explain why they did not en-
counter the mobile-focused localhost tracking methods. Be-



yond browsers, multiple studies show that smart-home de-
vices and mobile apps use local discovery protocols like
mDNS, SSDP, and UPnP to discover nearby devices or ser-
vices [34, 57, 116, 117]. Public incidents further stress how
browsers can reach privileged localhost services: Zoom’s ma-
cOS client exposed a local server enabling RCE via crafted
URLs [32]. Researchers discovered eBay scanning localhost
ports via WebRTC [2]. Oligo Security disclosed a critical
RCE in Anthropic’s MCP Inspector via unauthenticated local-
host access [109]. ASUS DriverHub exposed a service that
allowed remote code execution from malicious websites [120].
All these cases establish that browser-originated traffic to lo-
cal endpoints is an exploitable vector. Our work extends these
findings by uncovering a new privacy threat that bridges web
and native tracking paradigms.
Tracking on Mobile and Web Platforms. Extensive research
has shown that both mobile and web ecosystems leak identi-
fiers due to opaque third-party code, limited transparency, and
gaps in policy enforcement [13, 15, 31, 49, 82–84, 104, 112].
However, these efforts analyzed abuse following a platform-
centric approach, thus missing coordinated privacy abuses like
localhost-based tracking. On mobile, several studies have ex-
amined how embedded SDKs exploit local interfaces to exfil-
trate data. Jia et al. systematically analyzed 24K Android apps
and uncovered widespread open-port usage with exploitable
configurations [80], while Wu et al. found that roughly 15%
of popular apps — including Yandex apps — expose TCP
services, often through embedded SDKs [132]. In parallel,
the web ecosystem continues to rely on pervasive tracking
techniques such as evercookies and fingerprinting [13, 49].
Additionally, WebRTC features have been exploited for device
and network enumeration, IP leakage, and local fingerprint-
ing, enabling cross-site correlation attacks [1, 49]. Within this
landscape, Meta’s tracking infrastructure — particularly the
Pixel and Conversions API — has been under scrutiny for
bypassing browser-level defenses and enabling persistent user
tracking [35, 48]. Recently, Weerasekara et al. showed that
Android WebViews expose JavaScript-native bridges abused
to synchronize native IDs and session state with embedded
web content, including Yandex’ and Meta’s WebViews [131].
Beer et al. showed that Android CustomTabs weaken origin
isolation and facilitate ID flows via shared storage, referrers,
or injected interfaces [33].

11 Conclusions

This paper revealed a new threat affecting web browsers and
mobile platforms: the widespread use of a previously undis-
closed form of tracking paradigm to bridge web and native
mobile identities, nullifying protections such as app sand-
boxing, browsers’ Incognito Mode, and cookie clears. Our
longitudinal analysis showed that this tracking vector has re-
mained unnoticed for eight years in the case of Yandex. Two
Meta Android apps with 15 billion combined installs also

remained undetected for eight months until our disclosures.
This shows that studying web and mobile privacy threats
in isolation as disjoint research problems leads to structural
blind spots across web and mobile platforms, from their threat
models to app verification processes. By evaluating existing
and upcoming defenses, we demonstrated additional web-
to-app ID sharing vectors such as mDNS lookups, that re-
main exploitable but are not abused in the wild. Our study
led to mitigations deployed by major browser vendors, and
the termination of tracking campaigns by Yandex and Meta.
We encourage researchers, regulators, and relevant software
and platform vendors to focus on similar coordinated cross-
context privacy risks that may have remained under the radar.

Acknowledgments

We thank Chrome, Mozilla, DuckDuckGo, and Brave for their
collaboration. Special thanks to Álvaro Feal for helping us re-
produce app behaviors, Tom Van Goethem, Martin Thomson,
Steve Englehardt, and Dave Harbage for diligently handling
our disclosure and providing valuable insights, Bart Preneel
for helping with media outreach, HTTP Archive Project for
their longitudinal dataset, and Schloss Dagstuhl – Leibniz
Center for Informatics for sparking this collaboration. This re-
search was partially supported by the MICIU/AEI/10.13039/
501100011033/ through the grants PID2022-143304OB- I00,
EU ERDF (PARASITE), the Flemish Government through the
Cybersecurity Research Program grant VOEWICS02, the EU
Horizon 2020 programme under grant agreement H2020-SC1-
FA-DTS-2018-1-826284 (ProTego), the Research Council
KU Leuven IF/C1 "From Website Fingerprinting to App Fin-
gerprinting: Inferring private user activity from encrypted net-
work traffic", the Austrian Funding agency FFG under grant
S3AI Ref. 872172 (COMET Module) and by the Defense Ad-
vanced Research Projects (DARPA), contract number FA8750-
19-C-0502 (RACE PRISM). Gunes Acar is supported by a
Netherlands Organisation for Scientific Research (NWO) Vidi
grant. Prof. N. Vallina-Rodriguez was appointed as the 2019
Ramon y Cajal fellow (RYC2020-030316-I), funded by the
MICI-U/AEI/10.13039/501100011033/ and the EU ESF In-
vesting in your Future.

Ethical Considerations

Our research identified an unreported cross-context tracking
technique that undermines expected sandboxing and isolation
guarantees in mobile operating systems and browsers, and
poses a systemic privacy risk to users. To that end, our ethical
objective was ecosystem-wide risk reduction through disclo-
sures to relevant stakeholders. A timeline of our disclosures
can be found in Table 4.

Stakeholders and Risk Framing. We identify four stake-
holder groups: (i) users whose browsing activity can be linked



to native-app identities, (ii) browser and OS vendors — both
Android and iOS — who define and enforce isolation bound-
aries and other privacy controls, (iii) website operators who
embed third-party scripts and may face operational fallout
from mitigations, and (iv) companies whose scripts and apps
implement localhost tracking (Meta and Yandex). We treated
browser and OS vendors as the primary parties for disclosure
(rather than Meta and Yandex), because the issue reflects an
intentional abuse of cross-context isolation security mecha-
nisms rather than a product defect. The risk is systemic: even
if one actor discontinues the practice, the same pattern can
recur unless platforms constrain misuse of localhost access.

Responsible Disclosure Process and Timeline. We first
disclosed the localhost abuse to the Android Security and
Chrome Privacy teams following responsible disclosure prac-
tices, as the issue was initially observed on their products.
After confirming the behavior across other browsers, we ex-
tended disclosure to Mozilla, Brave, DuckDuckGo, Microsoft
Edge, WebKit, and to EU- and US-based data protection au-
thorities. Each disclosure included detailed technical reports,
proof-of-concept applications, screen captures, and analysis
scripts to support independent validation and reproduction.

Our disclosures were an iterative process rather than a sin-
gle event. We maintained active communication with parties,
and responded to technical questions, conducted additional
experiments, discussed and tested proposed mitigations, and
provided updates as new vectors were identified. In several
cases, vendors independently replicated our findings.

Public Disclosure. Because the tracking technique was ac-
tively abused, we pursued public disclosure in parallel with
affected vendor coordination before submission of this pa-
per. Public disclosures increase societal awareness, and moti-
vate and expedite mitigations. The public disclosure occurred
through a dedicated website (https://localmess.github
.io) with independent journalistic reporting. As part of the
same release process, reporters asked Meta and Yandex’s state-
ments the day before the publication, giving them a chance
to respond. Overall, we believe that this disclosure process
primarily benefited web and mobile users, consistent with
the Menlo Principles of Beneficence and Public Interest, also
fostering regulatory and legislative debate. The termination
of the observed campaigns and the deployment of mitiga-
tions reduced future privacy and security risks for billions of
users. The findings have since informed public accountability
mechanisms, including class action lawsuits in multiple ju-
risdictions, expert testimony before the Spanish Congress in
the context of the Digital Service Act (DSA), and technical
discussions at IETF and W3C, where LNA standardization
documents cite this work [8] While we omitted the men-
tion of our public disclosure in our initial paper submission
to preserve anonymity and unbiased reviews, we informed
USENIX’26 Program Chairs about the public status of our
findings.

Table 4: Disclosure timeline.

Date Action

End of Jan. 2025 Initial discovery of web-to-app identifier bridging via
localhost.

Mar. 2025 Private disclosure to Android Security and Chrome Pri-
vacy teams.

Apr.–May 2025 Disclosure to additional browser vendors (Mozilla,
Brave, DuckDuckGo, Edge) and to representatives of
EU and USA Data Protection Authorities.

May 2025 Discovery and disclosure of additional bypass vectors
(e.g., TURN-based variants) to affected vendors.

End May 2025 Rollout of first (temporary) browser mitigations.

Jun. 2025 Coordinated public disclosure; Meta and Yandex termi-
nate the observed behavior.
Disclosure of a localhost-based cross-profile data leak-
age vector between Android Work and Personal profiles.

Aug. 2025 Disclosure of the additional localhost vectors.
Aug.-Oct. 2025 Deployment of Local Network Access (LNA) restric-

tions across major browsers.

Disclosure of Additional Vectors During Standardization.
We publicly disclosed newly identified LNA bypass tech-
niques (§7) via WICG issue trackers [5,9] rather than private
disclosures, because LNA was still under active standardiza-
tion and its editors explicitly encouraged public input. We
did not observe these vectors being exploited in the wild.
Open disclosures allowed mitigations to be designed and
deployed before exploitation, without introducing fundamen-
tally new capabilities, since similar vectors were already dis-
cussed. Early disclosures also enabled abuse monitoring by
vendors and input by the security community.

Data Handling and Harm Minimization. Our measure-
ments were designed to minimize potential harm. Crawls
avoided concurrent visits to the same site to reduce server
load and lower the chance of operational disruption. We did
not use authenticated user accounts and limited interactions
to what was necessary to observe default script behavior.

Potential Negative Outcomes (A Retrospective Look).
While our study and related disclosures led to several pos-
itive outcomes, such as the termination of the active abuse
campaigns and the development of mitigations, it may also
have potential negative secondary effects. For instance, as is
typical with large security updates, restrictions due to LNA
caused breakage on certain sites [3]. Yet, we consider that the
privacy harm affecting billions of users outweighed it. Public
disclosures of LNA bypasses could lead to abuse, but as men-
tioned above, similar vectors were already openly discussed
and early disclosure supports mitigation design and abuse
monitoring.

Open Science

Data and code from our study can be found on https:
//doi.org/10.5281/zenodo.17880051. Because the

https://localmess.github.io
https://localmess.github.io
https://doi.org/10.5281/zenodo.17880051
https://doi.org/10.5281/zenodo.17880051


involved companies discontinued the disclosed tracking prac-
tices, exact replication of abuse behavior remains possible
through static analysis of publicly archived APKs and HAR
files, as well as our PoC websites and apps that reproduce the
localhost-probing behavior. To that end, we share the crawler
code, crawl data, crawl analysis scripts, Frida scripts, and
proof-of-concept apps and webpages.

References

[1] STUN IP Address Requests for WebRTC. https:
//github.com/diafygi/webrtc-ips, 2015.

[2] eBay is port scanning visitors to their website - and
they aren’t the only ones - nem.ec. https://blog.n
em.ec/2020/05/24/ebay-port-scanning, 2020.

[3] Blink Security Feature: Local Network Access issues.
https://issues.chromium.org/issues?q=custo
mfield1222907:%22Blink%3ESecurityFeature%3
ELocalNetworkAccess%22, 2025.

[4] Blocking LAN access from non-LAN sites doesn’t
seem to be working correctly. https://github.com
/brave/brave-browser/issues/46573, 2025.

[5] Consider some reserved IPv6 ranges as local. https:
//github.com/WICG/local-network-access/is
sues/15#issuecomment-3225316474, 2025.

[6] LNA issues with split DNS and unmanaged clients.
https://issues.chromium.org/issues/4577945
53, 2025.

[7] Local Network Access · Issue #163 · WebKit/standards-
positions. https://github.com/WebKit/standa
rds-positions/issues/163, 2025.

[8] Local Network Access – Draft Community Group Re-
port. https://wicg.github.io/local-network
-access/#user-mediation, 2025.

[9] mDNS access for WebRTC. https://github.com/W
ICG/local-network-access/issues/22#issuec
omment-3223162671, 2025.

[10] PSA: Private IP addresses exposed by WebRTC chang-
ing to mDNS hostnames. https://groups.google.
com/g/discuss-webrtc/c/6stQXi72BEU, 2025.

[11] Request for Mozilla Position on an Emerging Web
Specification: Local Network Access. https://gith
ub.com/mozilla/standards-positions/issues/
1260, 2025.

[12] 33Across. Home. https://www.33across.com,
2025.

[13] Gunes Acar, Christian Eubank, Steven Englehardt,
Marc Juarez, Arvind Narayanan, and Claudia Diaz.
The Web Never Forgets: Persistent Tracking Mech-
anisms in the Wild. In Proc. of ACM CCS, 2014.

[14] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind
Narayanan, and Nick Feamster. Web-based attacks to
discover and control local IoT devices. In Proc. of IoT
S&P Workshop. ACM, 2018.

[15] Noura Alomar, Joel Reardon, Aniketh Girish, Narseo
Vallina-Rodriguez, and Serge Egelman. The Effect
of Platform Policies on App Privacy Compliance: A
Study of Child-Directed Apps. Proc. on PETS, (3),
2025.

[16] Harald Alvestrand. PSA: Modification of SDP “ufrag”
and “passwd” attributes is going away. https://gr
oups.google.com/g/discuss-webrtc/c/PIJZN5
MTZF4, 2025.

[17] Android. Android Work Profiles. https://www.andr
oid.com/intl/en_au/enterprise/work-profi
le/, 2025.

[18] Android Developers. Features and APIs Overview —
Android 12. https://developer.android.com/ab
out/versions/12/features, 2025.

[19] Android Developers. Foreground Service Types. http
s://developer.android.com/develop/backgrou
nd-work/services/fgs/service-types, 2025.

[20] Android Developers. Foreground Services Overview.
https://developer.android.com/develop/back
ground-work/services/fgs, 2025.

[21] Android Developers. Local Network Permission (An-
droid Privacy and Security). https://developer.an
droid.com/privacy-and-security/local-net
work-permission, 2025.

[22] Android Developers. Permissions on Android
(Overview). https://developer.android.co
m/guide/topics/permissions/overview, 2025.

[23] Android Developers. Processes and Threads. https:
//developer.android.com/guide/components/p
rocesses-and-threads, 2025.

[24] Android Open Source Project (AOSP). Application
Sandbox. https://source.android.com/docs/se
curity/app-sandbox, 2025.

[25] Apple Developer Documentation. App Tracking Trans-
parency. https://developer.apple.com/docume
ntation/apptrackingtransparency, 2025.

https://github.com/diafygi/webrtc-ips
https://github.com/diafygi/webrtc-ips
https://blog.nem.ec/2020/05/24/ebay-port-scanning
https://blog.nem.ec/2020/05/24/ebay-port-scanning
https://issues.chromium.org/issues?q=customfield1222907:%22Blink%3ESecurityFeature%3ELocalNetworkAccess%22
https://issues.chromium.org/issues?q=customfield1222907:%22Blink%3ESecurityFeature%3ELocalNetworkAccess%22
https://issues.chromium.org/issues?q=customfield1222907:%22Blink%3ESecurityFeature%3ELocalNetworkAccess%22
https://github.com/brave/brave-browser/issues/46573
https://github.com/brave/brave-browser/issues/46573
https://github.com/WICG/local-network-access/issues/15#issuecomment-3225316474
https://github.com/WICG/local-network-access/issues/15#issuecomment-3225316474
https://github.com/WICG/local-network-access/issues/15#issuecomment-3225316474
https://issues.chromium.org/issues/457794553
https://issues.chromium.org/issues/457794553
https://github.com/WebKit/standards-positions/issues/163
https://github.com/WebKit/standards-positions/issues/163
https://wicg.github.io/local-network-access/#user-mediation
https://wicg.github.io/local-network-access/#user-mediation
https://github.com/WICG/local-network-access/issues/22#issuecomment-3223162671
https://github.com/WICG/local-network-access/issues/22#issuecomment-3223162671
https://github.com/WICG/local-network-access/issues/22#issuecomment-3223162671
https://groups.google.com/g/discuss-webrtc/c/6stQXi72BEU
https://groups.google.com/g/discuss-webrtc/c/6stQXi72BEU
https://github.com/mozilla/standards-positions/issues/1260
https://github.com/mozilla/standards-positions/issues/1260
https://github.com/mozilla/standards-positions/issues/1260
https://www.33across.com
https://groups.google.com/g/discuss-webrtc/c/PIJZN5MTZF4
https://groups.google.com/g/discuss-webrtc/c/PIJZN5MTZF4
https://groups.google.com/g/discuss-webrtc/c/PIJZN5MTZF4
https://www.android.com/intl/en_au/enterprise/work-profile/
https://www.android.com/intl/en_au/enterprise/work-profile/
https://www.android.com/intl/en_au/enterprise/work-profile/
https://developer.android.com/about/versions/12/features
https://developer.android.com/about/versions/12/features
https://developer.android.com/develop/background-work/services/fgs/service-types
https://developer.android.com/develop/background-work/services/fgs/service-types
https://developer.android.com/develop/background-work/services/fgs/service-types
https://developer.android.com/develop/background-work/services/fgs
https://developer.android.com/develop/background-work/services/fgs
https://developer.android.com/privacy-and-security/local-network-permission
https://developer.android.com/privacy-and-security/local-network-permission
https://developer.android.com/privacy-and-security/local-network-permission
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://developer.apple.com/documentation/apptrackingtransparency
https://developer.apple.com/documentation/apptrackingtransparency


[26] Apple Developer Documentation. Configuring App
Groups. https://developer.apple.com/docume
ntation/xcode/configuring-app-groups, 2025.

[27] Apple Developer Documentation. Configuring Back-
ground Execution Modes. https://developer.ap
ple.com/documentation/xcode/configuring-b
ackground-execution-modes, 2025.

[28] Apple Developer Documentation. Entitlements (Bun-
dle Resources). https://developer.apple.com/
documentation/bundleresources/entitlemen
ts, 2025.

[29] Apple Developer Documentation. NSLocalNet-
workUsageDescription (Bundle Resources — Infor-
mation Property List). https://developer.apple.
com/documentation/bundleresources/informat
ion-property-list/nslocalnetworkusagedes
cription, 2025.

[30] Apple Developer Documentation. Supporting Associ-
ated Domains. https://developer.apple.com/do
cumentation/xcode/supporting-associated-d
omains, 2025.

[31] Ioannis Arkalakis, Michalis Diamantaris, Serafeim
Moustakas, Sotiris Ioannidis, Jason Polakis, and Pana-
giotis Ilia. Abandon All Hope Ye Who Enter Here:
A Dynamic, Longitudinal Investigation of Android’s
Data Safety Section. In Proc. of USENIX Security,
2024.

[32] Assetnote. Zoom Zero-Day Followup: Getting the
RCE. https://www.assetnote.io/resources/r
esearch/zoom-zero-day-followup-getting-t
he-rce, 2019.

[33] Philipp Beer, Marco Squarcina, Lorenzo Veronese, and
Martina Lindorfer. Tabbed Out: Subverting the An-
droid Custom Tab Security Model. In Proc. of IEEE
S&P Symposium, 2024.

[34] Angelos Beitis, Jeroen Robben, Alexander Matern,
Zhen Lei, Yijia Li, Nian Xue, Yongle Chen, Vik Van-
derlinden, and Mathy Vanhoef. LANShield: Analysing
and Protecting Local Network Access on Mobile De-
vices. Proc. on PETS, 2025.

[35] Paschalis Bekos, Panagiotis Papadopoulos, Evange-
los P. Markatos, and Nicolas Kourtellis. The Hitch-
hiker’s Guide to Facebook Web Tracking with Invisible
Pixels and Click IDs. In Proc. of WWW, 2023.

[36] Brave Software. Brave Privacy Update: Localhost
Resource Permission. https://brave.com/privac
y-updates/27-localhost-permission, 2023.

[37] Brave Software. Brave Shields. https://brave.co
m/shields, 2025.

[38] BuiltWith Trends. BuiltWith. https://builtwith.
com, 2025.

[39] BuiltWith Trends. Websites using Facebook Pixel.
https://trends.builtwith.com/websitelist/F
acebook-Pixel, 2025.

[40] BuiltWith Trends. Websites using Yandex Metrika.
https://trends.builtwith.com/analytics/Yan
dex-Metrika, 2025.

[41] Stuart Cheshire and Marc Krochmal. DNS-Based Ser-
vice Discovery. Technical Report RFC 6763, IETF,
2013.

[42] Stuart Cheshire and Marc Krochmal. Multicast DNS.
Technical Report RFC 6762, IETF, 2013.

[43] Chrome for Developers. What is a Chrome Finch
experiment? https://developer.chrome.com/d
ocs/web-platform/chrome-finch, 2025.

[44] William Denniss and John Bradley. OAuth 2.0 for
Native Apps, Section 4.1. https://datatracke
r.ietf.org/doc/html/rfc8252#section-4.1,
2017.

[45] DuckDuckGo. Tracker Blocklists. https://github
.com/duckduckgo/tracker-blocklists, 2022.

[46] DuckDuckGo. Tracker Radar Collector. https://gi
thub.com/duckduckgo/tracker-radar-collect
or, 2025.

[47] Zakir Durumeric. crux-top-lists. https://github.c
om/zakird/crux-top-lists, 2022.

[48] Asmaa El Fraihi, Nardjes Amieur, Walter Rudametkin,
and Oana Goga. Client-side and Server-side Tracking
on Meta: Effectiveness and Accuracy. Proc. on PETS,
(3), 2024.

[49] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis.
In Proc. of ACM CCS, 2016.

[50] European Data Protection Board. Guidelines 2/2023
on Technical Scope of Art. 5(3) of ePrivacy Directive
(Version 2). https://www.edpb.europa.eu/syste
m/files/2024-10/edpb_guidelines_202302_t
echnical_scope_art_53_eprivacydirective_v2
_en_0.pdf, 2024.

[51] European Parliament and Council. Directive
2002/58/EC (ePrivacy Directive), as amended by Di-
rective 2009/136/EC. https://eur-lex.europa.

https://developer.apple.com/documentation/xcode/configuring-app-groups
https://developer.apple.com/documentation/xcode/configuring-app-groups
https://developer.apple.com/documentation/xcode/configuring-background-execution-modes
https://developer.apple.com/documentation/xcode/configuring-background-execution-modes
https://developer.apple.com/documentation/xcode/configuring-background-execution-modes
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/information-property-list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/bundleresources/information-property-list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/bundleresources/information-property-list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/bundleresources/information-property-list/nslocalnetworkusagedescription
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://www.assetnote.io/resources/research/zoom-zero-day-followup-getting-the-rce
https://www.assetnote.io/resources/research/zoom-zero-day-followup-getting-the-rce
https://www.assetnote.io/resources/research/zoom-zero-day-followup-getting-the-rce
https://brave.com/privacy-updates/27-localhost-permission
https://brave.com/privacy-updates/27-localhost-permission
https://brave.com/shields
https://brave.com/shields
https://builtwith.com
https://builtwith.com
https://trends.builtwith.com/websitelist/Facebook-Pixel
https://trends.builtwith.com/websitelist/Facebook-Pixel
https://trends.builtwith.com/analytics/Yandex-Metrika
https://trends.builtwith.com/analytics/Yandex-Metrika
https://developer.chrome.com/docs/web-platform/chrome-finch
https://developer.chrome.com/docs/web-platform/chrome-finch
https://datatracker.ietf.org/doc/html/rfc8252#section-4.1
https://datatracker.ietf.org/doc/html/rfc8252#section-4.1
https://github.com/duckduckgo/tracker-blocklists
https://github.com/duckduckgo/tracker-blocklists
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/zakird/crux-top-lists
https://github.com/zakird/crux-top-lists
https://www.edpb.europa.eu/system/files/2024-10/edpb_guidelines_202302_technical_scope_art_53_eprivacydirective_v2_en_0.pdf
https://www.edpb.europa.eu/system/files/2024-10/edpb_guidelines_202302_technical_scope_art_53_eprivacydirective_v2_en_0.pdf
https://www.edpb.europa.eu/system/files/2024-10/edpb_guidelines_202302_technical_scope_art_53_eprivacydirective_v2_en_0.pdf
https://www.edpb.europa.eu/system/files/2024-10/edpb_guidelines_202302_technical_scope_art_53_eprivacydirective_v2_en_0.pdf
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0058:20091219:EN:HTML


eu/LexUriServ/LexUriServ.do?uri=CONSLEG:
2002L0058:20091219:EN:HTML, 2009.

[52] European Parliament and Council. General Data Pro-
tection Regulation, Regulation 2016/679. https:
//eur-lex.europa.eu/legal-content/EN/TX
T/HTML/?uri=CELEX:32016R0679, 2016.

[53] European Parliament and Council. Regulation (EU)
2022/1925 on Contestable and Fair Markets in the Dig-
ital Sector (Digital Markets Act). http://data.eur
opa.eu/eli/reg/2022/1925/2022-10-12, 2022.

[54] European Parliament and Council. Regulation (EU)
2022/2065 on a Single Market for Digital Services
(Digital Services Act). http://data.europa.eu/e
li/reg/2022/2065/oj, 2022.

[55] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wi-
jesekera, Joel Reardon, Serge Egelman, and Narseo
Vallina-Rodriguez. Don’t accept candy from strangers:
An analysis of third-party mobile sdks. In Data Pro-
tection and Privacy: Data Protection and Artificial
Intelligence, 2021.

[56] Julien Gamba, Álvaro Feal, Eduardo Blazquez, Vin-
uri Bandara, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. Mules and permission laun-
dering in Android: Dissecting custom permissions in
the wild. IEEE Transactions on Dependable and Se-
cure Computing, 2023.

[57] Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J.
Dubois, Srdjan Matic, Danny Yuxing Huang, Serge
Egelman, Joel Reardon, Juan Tapiador, David Choffnes,
and Narseo Vallina-Rodriguez. In the Room Where It
Happens: Characterizing Local Communication and
Threats in Smart Homes. In Proc. of ACM IMC, 2023.

[58] Aniketh Girish, Joel Reardon, Juan Tapiador, Srdjan
Matic, and Narseo Vallina-Rodriguez. Your Signal,
Their Data: An Empirical Privacy Analysis of Wireless-
scanning SDKs in Android. Proc. on PETS, 2025.

[59] Google Chrome Developers. Add support for UDP
sockets for localhost restrictions (6574417) · Gerrit
Code Review. https://chromium-review.google
source.com/c/chromium/src/+/6574417, 2025.

[60] Google Chrome Developers. Chrome Platform Status:
HTML & JavaScript usage metrics. https://chrome
status.com/metrics/feature/timeline/popula
rity/3452, 2025.

[61] Google Chrome Developers. Enable RestrictAbuse-
PortsOnLocalhost by default (6607695) · Gerrit Code
Review. https://chromium-review.googlesour
ce.com/c/chromium/src/+/6607695, 2025.

[62] Google Chrome Developers. net/base/port_util.cc -
chromium/src.git - Git at Google. https://chromi
um.googlesource.com/chromium/src.git/+/r
efs/heads/master/net/base/port_util.cc#30,
2025.

[63] Google Chrome Developers. New Permission Prompt
for Local Network Access. https://developer.ch
rome.com/blog/local-network-access, 2025.

[64] Google Chrome Developers. Overview of CrUX. ht
tps://developer.chrome.com/docs/crux, 2025.

[65] Google Play. Developer Program Policy. https:
//support.google.com/googleplay/android-d
eveloper/answer/9857753, 2023.

[66] Google Play. User Data Policy for Android Developers.
https://support.google.com/googleplay/andr
oid-developer/answer/10144311?sjid=183387
17510598425318-EU, 2024.

[67] Google Play Console Help. Advertising ID. https:
//support.google.com/googleplay/android-d
eveloper/answer/6048248, 2025.

[68] Google Play Console Help. Advertising ID. https:
//support.google.com/googleplay/android-d
eveloper/answer/6048248, 2025.

[69] Google Play Console Help. Data safety on Google
Play. https://support.google.com/googlepla
y/android-developer/answer/9857753, 2025.

[70] Google Play Console Help. Provide information for
Google Play’s Data safety section. https://suppor
t.google.com/googleplay/android-developer
/answer/10787469?hl=en, 2025.

[71] Google Policy Center. Device and Network Abuse.
https://support.google.com/googleplay/andr
oid-developer/answer/16273414, 2025.

[72] Google Project Zero. Issue 42452214. https://proj
ect-zero.issues.chromium.org/issues/42452
214, 2016.

[73] Philipp Hancke. Not a Guide to SDP Munging. https:
//webrtchacks.com/not-a-guide-to-sdp-mun
ging/, 2020.

[74] HTTP Archive. Cookies. https://almanac.httpar
chive.org/en/2024/cookies#top-first-and-t
hird-party-cookies-and-domains-setting-t
hem, 2024.

[75] HTTP Archive. The HTTP Archive. https://http
archive.org, 2025.

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0058:20091219:EN:HTML
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0058:20091219:EN:HTML
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
http://data.europa.eu/eli/reg/2022/1925/2022-10-12
http://data.europa.eu/eli/reg/2022/1925/2022-10-12
http://data.europa.eu/eli/reg/2022/2065/oj
http://data.europa.eu/eli/reg/2022/2065/oj
https://chromium-review.googlesource.com/c/chromium/src/+/6574417
https://chromium-review.googlesource.com/c/chromium/src/+/6574417
https://chromestatus.com/metrics/feature/timeline/popularity/3452
https://chromestatus.com/metrics/feature/timeline/popularity/3452
https://chromestatus.com/metrics/feature/timeline/popularity/3452
https://chromium-review.googlesource.com/c/chromium/src/+/6607695
https://chromium-review.googlesource.com/c/chromium/src/+/6607695
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/net/base/port_util.cc#30
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/net/base/port_util.cc#30
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/net/base/port_util.cc#30
https://developer.chrome.com/blog/local-network-access
https://developer.chrome.com/blog/local-network-access
https://developer.chrome.com/docs/crux
https://developer.chrome.com/docs/crux
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/10144311?sjid=18338717510598425318-EU
https://support.google.com/googleplay/android-developer/answer/10144311?sjid=18338717510598425318-EU
https://support.google.com/googleplay/android-developer/answer/10144311?sjid=18338717510598425318-EU
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/16273414
https://support.google.com/googleplay/android-developer/answer/16273414
https://project-zero.issues.chromium.org/issues/42452214
https://project-zero.issues.chromium.org/issues/42452214
https://project-zero.issues.chromium.org/issues/42452214
https://webrtchacks.com/not-a-guide-to-sdp-munging/
https://webrtchacks.com/not-a-guide-to-sdp-munging/
https://webrtchacks.com/not-a-guide-to-sdp-munging/
https://almanac.httparchive.org/en/2024/cookies#top-first-and-third-party-cookies-and-domains-setting-them
https://almanac.httparchive.org/en/2024/cookies#top-first-and-third-party-cookies-and-domains-setting-them
https://almanac.httparchive.org/en/2024/cookies#top-first-and-third-party-cookies-and-domains-setting-them
https://almanac.httparchive.org/en/2024/cookies#top-first-and-third-party-cookies-and-domains-setting-them
https://httparchive.org
https://httparchive.org


[76] Internet Engineering Task Force. Interactive Con-
nectivity Establishment (ICE): A Protocol for Net-
work Address Translator (NAT) Traversal. https:
//datatracker.ietf.org/doc/html/rfc8445,
2018.

[77] Internet Engineering Task Force. JavaScript Session
Establishment Protocol (JSEP). https://datatrac
ker.ietf.org/doc/html/rfc8829#name-modif
ying-an-offer-or-answe, 2021.

[78] Collin Jackson, Adam Barth, Andrew Bortz, Weidong
Shao, and Dan Boneh. Protecting browsers from DNS
rebinding attacks. ACM Transactions on the Web
(TWEB), 3(1):1–26, 2009.

[79] Nikhil Jha, Martino Trevisan, Luca Vassio, and Marco
Mellia. The Internet with Privacy Policies: Measuring
The Web Upon Consent. In ACM Trans. Web, volume
16, 3. ACM, 2022.

[80] Yunhan Jack Jia, Qi Alfred Chen, Yikai Lin, Chao
Kong, and Z. Morley Mao. Open Doors for Bob and
Mallory: Open Port Usage in Android Apps and Secu-
rity Implications. In Proc. of IEEE EuroS&P, 2017.

[81] Robin Kirchner, Jonas Möller, Marius Musch, David
Klein, Konrad Rieck, and Martin Johns. Dancer in the
dark: Synthesizing and evaluating polyglots for blind
Cross-Site scripting. In Proc. of USENIX Security,
2024.

[82] Simon Koch, Benjamin Altpeter, and Martin Johns.
The {OK} is not enough: A large scale study of con-
sent dialogs in smartphone applications. In Proc. of
USENIX Security, 2023.

[83] Konrad Kollnig, Pierre Dewitte, Max Van Kleek,
Ge Wang, Daniel Omeiza, Helena Webb, and Nigel
Shadbolt. A fait accompli? An empirical study into the
absence of consent to third-party tracking in Android
apps. In Proc. of SOUPS, 2021.

[84] Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max
Van Kleek, and Nigel Shadbolt. Are iPhones Really
Better for Privacy? Comparative study of iOS and An-
droid Apps. In Proc. on PETS, 2022.

[85] Dhruv Kuchhal and Frank Li. Knock and talk: investi-
gating local network communications on websites. In
Proc. of ACM IMC, 2021.

[86] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker,
and Nick Kralevich. The Android platform security
model. ACM TOPS, 24(3), 2021.

[87] MDN Web Docs. Mixed content. https://develo
per.mozilla.org/en-US/docs/Web/Security/
Mixed_content, 2025.

[88] MDN Web Docs. Permissions API. https://develo
per.mozilla.org/en-US/docs/Web/API/Permi
ssions_API, 2025.

[89] MDN Web Docs. RTCPeerConnection. https://de
veloper.mozilla.org/en-US/docs/Web/API/R
TCPeerConnection, 2025.

[90] MDN Web Docs. Same-Origin Policy. https://de
veloper.mozilla.org/en-US/docs/Web/Secur
ity/Same-origin_policy, 2025.

[91] MDN Web Docs. Secure contexts. https://deve
loper.mozilla.org/en-US/docs/Web/Security/
Secure_Contexts, 2025.

[92] MDN Web Docs. State Partitioning - Privacy on the
web. https://developer.mozilla.org/en-US/
docs/Web/Privacy/Guides/State_Partitioni
ng, 2025.

[93] MDN Web Docs. Third-party cookies - Privacy on the
web. https://developer.mozilla.org/en-US/
docs/Web/Privacy/Guides/Third-party_cooki
es, 2025.

[94] Meta for Developers. About advanced matching for
web. https://www.facebook.com/business/he
lp/611774685654668, 2025.

[95] Meta for Developers. Facebook SDK making call to
localhost. https://web.archive.org/web/2025
0531105747/https://developers.facebook.co
m/community/threads/317050484803752/, 2025.

[96] Meta for Developers. fbp and fbc Parameters. https:
//web.archive.org/web/20250602140111/htt
ps://developers.facebook.com/docs/marketi
ng-api/conversions-api/parameters/fbp-and
-fbc/, 2025.

[97] Meta for Developers. Meta Pixel. https://develo
pers.facebook.com/docs/meta-pixel, 2025.

[98] Meta for Developers. Meta Pixel in Android WebView.
https://web.archive.org/web/20250531105711
/https://developers.facebook.com/communit
y/threads/937149104821259/, 2025.

[99] Meta Platforms, Inc. Cookies Policy. https://we
b.archive.org/web/20250602140832/https:
//www.facebook.com/privacy/policies/cookie
s/?subpage=subpage-1.3, 2025.

[100] Miki. The Power of DNS Rebinding: Stealing WiFi
Passwords with a Website. https://blog.miki.it
/posts/the-power-of-dns-rebinding-stealin
g-wifi-passwords-with-a-website/, 2015.

https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc8829#name-modifying-an-offer-or-answe
https://datatracker.ietf.org/doc/html/rfc8829#name-modifying-an-offer-or-answe
https://datatracker.ietf.org/doc/html/rfc8829#name-modifying-an-offer-or-answe
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Security/Secure_Contexts
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/State_Partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/State_Partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/State_Partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Third-party_cookies
https://developer.mozilla.org/en-US/docs/Web/Privacy/Guides/Third-party_cookies
https://www.facebook.com/business/help/611774685654668
https://www.facebook.com/business/help/611774685654668
https://web.archive.org/web/20250531105747/https://developers.facebook.com/community/threads/317050484803752/
https://web.archive.org/web/20250531105747/https://developers.facebook.com/community/threads/317050484803752/
https://web.archive.org/web/20250531105747/https://developers.facebook.com/community/threads/317050484803752/
https://web.archive.org/web/20250602140111/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20250602140111/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20250602140111/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20250602140111/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://web.archive.org/web/20250602140111/https://developers.facebook.com/docs/marketing-api/conversions-api/parameters/fbp-and-fbc/
https://developers.facebook.com/docs/meta-pixel
https://developers.facebook.com/docs/meta-pixel
https://web.archive.org/web/20250531105711/https://developers.facebook.com/community/threads/937149104821259/
https://web.archive.org/web/20250531105711/https://developers.facebook.com/community/threads/937149104821259/
https://web.archive.org/web/20250531105711/https://developers.facebook.com/community/threads/937149104821259/
https://web.archive.org/web/20250602140832/https://www.facebook.com/privacy/policies/cookies/?subpage=subpage-1.3
https://web.archive.org/web/20250602140832/https://www.facebook.com/privacy/policies/cookies/?subpage=subpage-1.3
https://web.archive.org/web/20250602140832/https://www.facebook.com/privacy/policies/cookies/?subpage=subpage-1.3
https://web.archive.org/web/20250602140832/https://www.facebook.com/privacy/policies/cookies/?subpage=subpage-1.3
https://blog.miki.it/posts/the-power-of-dns-rebinding-stealing-wifi-passwords-with-a-website/
https://blog.miki.it/posts/the-power-of-dns-rebinding-stealing-wifi-passwords-with-a-website/
https://blog.miki.it/posts/the-power-of-dns-rebinding-stealing-wifi-passwords-with-a-website/


[101] Mozilla. Mitigate CSRF attacks against internal net-
works (block rfc 1918 local addresses from non-local
addresses). https://bugzilla.mozilla.org/sho
w_bug.cgi?id=354493, 2006.

[102] Mozilla Support. Enhanced Tracking Protection in
Firefox for desktop. https://support.mozilla.or
g/en-US/kb/enhanced-tracking-protection-f
irefox-desktop, 2025.

[103] Trung Tin Nguyen, Michael Backes, Ninja Marnau,
and Ben Stock. Share First, Ask Later (or Never?)
Studying Violations of {GDPR’s} Explicit Consent in
Android Apps. In Proc. of USENIX Security, 2021.

[104] Trung Tin Nguyen, Michael Backes, and Ben Stock.
Freely given consent? Studying consent notice of third-
party tracking and its violations of GDPR in Android
apps. In Proc. of ACM CCS, 2022.

[105] Erik Nygren. Local IPv6 networks are not addressed
/ conflating NAT with "Private". https://github.c
om/WICG/private-network-access/issues/149,
2025.

[106] Okta, Inc. Okta: Secure Identity for Employees, Cus-
tomers, and AI. https://www.okta.com, 2025.

[107] F. Olano. Google Play Scraper. https://github.c
om/facundoolano/google-play-scraper, 2015.

[108] Oligo Security. 0-0-0-0-Day: Exploiting Localhost
APIs from the Browser. https://www.oligo.secu
rity/blog/0-0-0-0-day-exploiting-localho
st-apis-from-the-browser, 2024.

[109] Oligo Security. Critical RCE Vulnerability in An-
thropic MCP Inspector (CVE-2025-49596). https:
//www.oligo.security/blog/critical-rce-v
ulnerability-in-anthropic-mcp-inspector-c
ve-2025-49596, 2025.

[110] Amogh Pradeep, Muhammad Talha Paracha, Protick
Bhowmick, Ali Davanian, Abbas Razaghpanah, Tae-
joong Chung, Martina Lindorfer, Narseo Vallina-
Rodriguez, Dave Levin, and David Choffnes. A com-
parative analysis of certificate pinning in Android &
iOS. In Proc. of ACM IMC, 2022.

[111] Ole André Vadla Ravnås. Frida: A world-class dy-
namic instrumentation toolkit. https://frida.re/,
2025.

[112] Abbas Razaghpanah, Rishab Nithyanand, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,
Christian Kreibich, Phillipa Gill, et al. Apps, trackers,
privacy, and regulators: A global study of the mobile
tracking ecosystem. In Proc. of NDSS, 2018.

[113] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration
of apps’ circumvention of the Android permissions
system. In Proc. of USENIX Security, 2019.

[114] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-
Rodriguez, Serge Egelman, et al. “Won’t somebody
think of the children?” examining COPPA compliance
at scale. In Proc. on PETS, 2018.

[115] Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke
Valenta, and Zakir Durumeric. Toppling top lists: Eval-
uating the accuracy of popular website lists. In Proc.
of ACM IMC. ACM, 2022.

[116] David Schmidt, Alexander Ponticello, Magdalena
Steinböck, Katharina Krombholz, and Martina Lindor-
fer. Analyzing the iOS Local Network Permission
from a Technical and User Perspective. In Proc. of
IEEE S&P Symposium, 2025.

[117] David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and
Martina Lindorfer. IoTflow: Inferring IoT device be-
havior at scale through static mobile companion app
analysis. In Proc. of ACM CCS, 2023.

[118] Seon. Fraud Management. https://seon.io/land
ing/fraud-management, 2025.

[119] Martin Thomson. mDNS access for WebRTC. https:
//github.com/WICG/local-network-access/is
sues/22, 2025.

[120] Bill Toulas. ASUS DriverHub flaw let malicious sites
run commands with admin rights. https://www.bl
eepingcomputer.com/news/security/asus-dri
verhub-flaw-let-malicious-sites-run-comma
nds-with-admin-rights/, 2025.

[121] W3C. Secure Contexts. https://w3c.github.io/
webappsec-secure-contexts/#localhost, 2023.

[122] W3C Web Incubator Community Group. Local Net-
work Access Explainer. https://wicg.github.io
/local-network-access/, 2025.

[123] W3C Web Security. Same Origin Policy - Web Secu-
rity. https://www.w3.org/Security/wiki/Same_
Origin_Policy, 2025.

[124] W3C WebRTC Working Group. WebRTC: Real-time
Communication Between Browsers. W3C Candidate
Recommendation Snapshot, 2025. https://www.w3
.org/TR/webrtc/.

https://bugzilla.mozilla.org/show_bug.cgi?id=354493
https://bugzilla.mozilla.org/show_bug.cgi?id=354493
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://github.com/WICG/private-network-access/issues/149
https://github.com/WICG/private-network-access/issues/149
https://www.okta.com
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://www.oligo.security/blog/0-0-0-0-day-exploiting-localhost-apis-from-the-browser
https://www.oligo.security/blog/0-0-0-0-day-exploiting-localhost-apis-from-the-browser
https://www.oligo.security/blog/0-0-0-0-day-exploiting-localhost-apis-from-the-browser
https://www.oligo.security/blog/critical-rce-vulnerability-in-anthropic-mcp-inspector-cve-2025-49596
https://www.oligo.security/blog/critical-rce-vulnerability-in-anthropic-mcp-inspector-cve-2025-49596
https://www.oligo.security/blog/critical-rce-vulnerability-in-anthropic-mcp-inspector-cve-2025-49596
https://www.oligo.security/blog/critical-rce-vulnerability-in-anthropic-mcp-inspector-cve-2025-49596
https://frida.re/
https://seon.io/landing/fraud-management
https://seon.io/landing/fraud-management
https://github.com/WICG/local-network-access/issues/22
https://github.com/WICG/local-network-access/issues/22
https://github.com/WICG/local-network-access/issues/22
https://www.bleepingcomputer.com/news/security/asus-driverhub-flaw-let-malicious-sites-run-commands-with-admin-rights/
https://www.bleepingcomputer.com/news/security/asus-driverhub-flaw-let-malicious-sites-run-commands-with-admin-rights/
https://www.bleepingcomputer.com/news/security/asus-driverhub-flaw-let-malicious-sites-run-commands-with-admin-rights/
https://www.bleepingcomputer.com/news/security/asus-driverhub-flaw-let-malicious-sites-run-commands-with-admin-rights/
https://w3c.github.io/webappsec-secure-contexts/#localhost
https://w3c.github.io/webappsec-secure-contexts/#localhost
https://wicg.github.io/local-network-access/
https://wicg.github.io/local-network-access/
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/


[125] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-
Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun
Cao, and Guoai Xu. Beyond google play: A large-scale
comparative study of Chinese Android app markets. In
Proc. of ACM IMC, 2018.

[126] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan,
Luyi Xing, Xiaojing Liao, JinWei Dong, Nicolas Ser-
rano, Haoran Lu, XiaoFeng Wang, et al. Understanding
malicious cross-library data harvesting on Android. In
Proc. of USENIX Security, 2021.

[127] Qingsi Wang. PSA: Private IP addresses exposed by
WebRTC changing to mDNS hostnames. https://gr
oups.google.com/g/discuss-webrtc/c/6stQXi
72BEU/m/twDfpwQ4DAAJ, 2019.

[128] Web Application Security Working Group. Secure
Contexts. https://w3c.github.io/webappsec-s
ecure-contexts//#localhost, 2023.

[129] WebKit. Tracking Prevention in WebKit. https:
//webkit.org/tracking-prevention/, 2020.

[130] WebRTC Project. Getting Started with TURN Server.
https://webrtc.org/getting-started/turn-s
erver?hl=es-419, 2025.

[131] Nipuna Weerasekara, José Miguel Moreno, Srdjan
Matic, Joel Reardon, Juan Tapiador, Narseo Vallina-
Rodríguez, et al. Tracking Without Borders: Studying
the Role of WebViews in Bridging Mobile and Web
Tracking. Proc. on PETS, 2025.

[132] Daoyuan Wu, Debin Gao, Rocky K. C. Chang, En He,
Eric K. T. Cheng, and Robert H. Dend. Understanding
open ports in Android applications: Discovery, diagno-
sis, and security assessment. Proc. of NDSS, 2019.

[133] Yue Xiao, Chaoqi Zhang, Yue Qin, Fares Fahad S Al-
harbi, Luyi Xing, and Xiaojing Liao. Measuring Com-
pliance Implications of Third-party Libraries Privacy
Label Disclosure Guidelines. In Proc. of ACM CCS,
2024.

[134] Yandex. Yandex AppMetrica. https://appmetrica
.yandex.com/docs/en/, 2025.

[135] Yandex. Yandex Metrica. https://yandex.com/s
upport/metrica/en/, 2025.

Appendices

A Monitored WebRTC Methods

RTCPeerConnection (constructor), createDataChan-
nel, addIceCandidate, setLocalDescription, se-
tRemoteDescription. All API methods belong to the
RTCPeerConnection interface [89].

B Yandex Apps

Table 5: Yandex owned apps found listening to localhost ports.

Yandex app Package name Tested version

Yandex Maps ru.yandex.yandexmaps 23.5.0
Yandex Navigator ru.yandex.yandexnavi 23.5.0
Yandex Browser com.yandex.browser 25.4.1.100
Yandex Search com.yandex.searchapp 25.41
Metro in Europe — Vienna ru.yandex.metro 3.7.3
Yandex Go: Taxi Food ru.yandex.taxi 5.24.1

C Browsing History Leaks

Figure 7: Screenshot of our proof-of-concept app. Left are
three windows showing websites being visited on three differ-
ent browsers. Right is our PoC app showing the intercepted
browsing history.

D Contacted Yandex Domains

Table 6: Domains contacted by Yandex apps and identifiers
observed in network traffic.

Package name Domain Identifiers

com.yandex.browser report.appmetrica.yandex.net AAID
com.yandex.browser startup.mobile.yandex.net AAID

ru.yandex.metro api.browser.yandex.ru Build1

ru.yandex.metro report.appmetrica.yandex.net AAID
ru.yandex.metro startup.mobile.yandex.net AAID

ru.yandex.taxi api.browser.yandexcom.net Build1

ru.yandex.taxi rb.appmetrica.yango.com AAID
ru.yandex.taxi report.appmetrica.yango.com AAID
ru.yandex.taxi startup.appmetrica.yango.com AAID
ru.yandex.taxi tc.mobile.yandex.net MAC2

Location3

ru.yandex.taxi tc.taxitax.org Location3

1 Build: Build fingerprint, 2 MAC: Router MAC address, 3

Location: Coarse and Fine location

https://groups.google.com/g/discuss-webrtc/c/6stQXi72BEU/m/twDfpwQ4DAAJ
https://groups.google.com/g/discuss-webrtc/c/6stQXi72BEU/m/twDfpwQ4DAAJ
https://groups.google.com/g/discuss-webrtc/c/6stQXi72BEU/m/twDfpwQ4DAAJ
https://w3c.github.io/webappsec-secure-contexts//#localhost
https://w3c.github.io/webappsec-secure-contexts//#localhost
https://webkit.org/tracking-prevention/
https://webkit.org/tracking-prevention/
https://webrtc.org/getting-started/turn-server?hl=es-419
https://webrtc.org/getting-started/turn-server?hl=es-419
https://appmetrica.yandex.com/docs/en/
https://appmetrica.yandex.com/docs/en/
https://yandex.com/support/metrica/en/
https://yandex.com/support/metrica/en/

	Introduction
	Background
	Web Privacy Controls
	Mobile Privacy Controls
	WebRTC and Multicast DNS (mDNS)

	Threat Model
	Attack Feasibility

	Methodology
	Dataset
	Web Analysis
	App Analysis
	Limitations

	Empirical Results
	Yandex Metrica
	Communication Flow
	Use of Evasion Techniques
	Additional Risks: Browsing History Leak

	Meta Pixel
	Communication Flow

	Crawl Results
	Other Uses of Localhost Communications

	Affected Browsers and Mitigations
	Additional Attack Vectors
	WebRTC & IPv6 Addresses
	mDNS Lookups as a Web-to-App Channel

	Discussion
	Legal Considerations
	Related Work
	Conclusions
	Monitored WebRTC Methods
	Yandex Apps
	Browsing History Leaks
	Contacted Yandex Domains

